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Fig. 1. We propose RealMat, a di�usion-based realistic text-to-material generator. We first finetune a Stable Di�usion XL (SDXL) model pretrained on images
to generate detailed material maps using synthetic training data (le�). Although high-quality materials are generated in many cases, this finetuning shi�s the
distribution of SDXL toward a more synthetic appearance. To address this, we further finetune our model using reinforcement learning (RL) with a realism
reward function (right). We show samples and maps (in clockwise order from top le�: albedo, height, metallicity, and roughness) with fixed text prompts and
seeds. With RL, the generated material distribution shi�s towards more realistic overall.

Generative models for high-quality materials are particularly desirable to

make 3D content authoring more accessible. However, the majority of ma-

terial generation methods are trained on synthetic data. Synthetic data

provides precise supervision for material maps, which is convenient but

also tends to create a signi�cant visual gap with real-world materials. Al-

ternatively, recent work used a small dataset of real �ash photographs to

guarantee realism, however such data is limited in scale and diversity. To

address these limitations, we propose RealMat, a di�usion-based material

generator that leverages realistic priors, including a text-to-image model and

a dataset of realistic material photos under natural lighting. In RealMat, we
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�rst �netune a pretrained Stable Di�usion XL (SDXL) with synthetic mate-

rial maps arranged in 2 × 2 grids. This way, our model inherits some realism

of SDXL while learning the data distribution of the synthetic material grids.

Still, this creates a realism gap, with some generated materials appearing

synthetic. We propose to further �netune our model through reinforcement

learning (RL), encouraging the generation of realistic materials. We develop

a realism reward function for any material image under natural lighting, by

collecting a large-scale dataset of realistic material images. We show that

this approach increases generated materials’ realism compared to our base

model and related work.
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1 INTRODUCTION

Material re�ectance properties play a key role in the appearance of

a 3D scene. Material design by artists traditionally required manual
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work by experts and specialized software tools. More recently, gen-

erative techniques have been proposed [Guerrero et al. 2022; Guo

et al. 2020; Vecchio et al. 2024b; Xue et al. 2024; Zhou et al. 2022].

However, these still fall short of achieving su�cient realism, since

they are trained on synthetic data. Material generation exclusively

from real photos has also been explored [Zhou et al. 2023a], but

this approach still su�ers from limited real training data. We pro-

pose RealMat, which leverages the priors learned by a text-to-image

di�usion model (we use Stable Di�usion XL [Podell et al. 2023;

Rombach et al. 2022]), combined with a reinforcement learning (RL)

approach [Black et al. 2023] to further improve the realism of the

generated materials.

Finetuning di�usion models has been proposed for various tasks,

showing that the priors from the original models can usually be pre-

served while adapting the model to new domains. However, these

tasks typically still target RGB images, while materials (SVBRDFs)

require multiple channels (typically di�use albedo, heights/normals,

roughness, metallicity, etc.). To adapt SDXL to generate materials

rather than RGB images, we propose to organize the albedo, height

map, roughness and metallicity into a 2 × 2 grid within a single

RGB image. Using this approach, we can �netune SDXL using syn-

thetic material data, while retaining the di�usion model prior. This

allows our model to generate a much wider range of appearances

with higher realism than a model trained from scratch for SVBRDFs

[Vecchio et al. 2024b]. The �netuning process on synthetic data

nonetheless pushes the model towards the generation of somewhat

more synthetic appearances. To counteract this, we propose to use

a reinforcement learning approach inspired by DDPO [Black et al.

2023] to further �netune our model towards generating materials

with higher realism. Using RL allows us to apply a realism reward

directly to the output of the multi-step inference process of a dif-

fusion model. This approach better re�ects the quality observed

at inference time than traditional training methods, where a loss

is applied only to the coarse output of a single denoising step. We

design a reward function that assigns higher rewards to materials

that appear more realistic. Speci�cally, we train a linear layer that

takes CLIP image features [Radford et al. 2021] of the material im-

age under natural lighting, and outputs a realism score. The reward

model is trained on a newly �ltered and labeled dataset of material

images.

Combining the �netuning stage using our material grid approach

and the RL stage with a realism reward, RealMat learns to generate

photorealistic and diverse materials. We evaluate our approach with

qualitative comparisons and a user study. In summary, we make the

following contributions:

• We propose a simple yet e�ective strategy to �netune a pretrained

text-to-image di�usion model to the SVBRDF map generation

task, using a 2 × 2 grid approach.

• We develop a reward function that can accurately evaluate the

realism of rendered materials under natural lighting, and use it

in a reinforcement learning (RL) stage to enhance the realism of

the �nal model.

2 RELATED WORK

Image Generation. Image generation has been a long-standing

task in computer vision and computer graphics. Variational Autoen-

coders (VAEs) [Kingma 2013] and Generative Adversarial Networks

(GANs) [Goodfellow et al. 2014] have been widely used for image

generation applications. However, VAEs often generate blurry im-

ages due to the di�culty of modeling complex joint distribution

in image space. GANs can produce sharp images, but they face

many challenges like training instability and mode collapse. In re-

cent years, Di�usion Models (DM) [Ho et al. 2020] have stood out

in image generation tasks due to stable training and high-quality

results. With a well-trained noise estimation model, DMs progres-

sively transform input noises into high-quality images through a

multi-step denoising process. Built upon DMs, Latent Di�usion

Models (LDMs) [Rombach et al. 2022] were proposed to perform

denoising steps in latent space, signi�cantly reducing computational

and memory cost for high-resolution (512 × 512 or 768 × 768) im-

age generation. To further lift LDMs to higher resolution, Stable

Di�usion XL (SDXL) [Podell et al. 2023] utilizes a larger UNet and

a second text encoder. Leveraging the priors learned from a very

large image dataset [Schuhmann et al. 2022] SDXL can generate

1k × 1k high-�delity and photo-realistic RGB images. Therefore, we

build RealMat on top of SDXL to leverage its strengths, including

strong generalization, realism, and high-resolution generation.

Material Acquisition. Material re�ectance property is a key fac-

tor determining the appearance of virtual scenes. Obtaining high-

quality photo-realisticmaterials have been a challenging task in com-

puter graphics industry. Traditional acquisition approaches rely on

bulky and expensive hardware such as goniore�ectometer [Guarn-

era et al. 2016; Matusik et al. 2003] to extensively sample the light

and view directions to extract Spatially Varying Bidirectional Re-

�ectance Distribution Functions (SVBRDFs) from real material sam-

ples. Recently, with the development of deep learning techniques,

many learning-based methods have been proposed for material ac-

quisition. These methods train material priors using synthetic or

real dataset to extract SVBRDFs through either feed-forward pro-

cess [Deschaintre et al. 2018, 2019; Guo et al. 2021; Li et al. 2017,

2018; Martin et al. 2022; Nie et al. 2024; Wang et al. 2023; Zhang

et al. 2023; Zhou and Kalantari 2021, 2022], optimization [Gao et al.

2019; Guo et al. 2020; Henzler et al. 2021; Luo et al. 2024; Zhou et al.

2023b], or denoising process [Sartor and Peers 2023; Vecchio et al.

2024a]. As opposed to our goal, these methods target the acquisition

of SVBRDFs from input photographs, while our approach focuses

on generating new materials from text prompts.

Material Generation. An alternative method to obtaining mate-

rials is through material generation. In the industry, the material

creation process heavily relies on complex procedural node graphs,

which require signi�cant expertise. To simplify the material creation

process, various learning-based material generators have been pro-

posed, either using GANs [Guo et al. 2020; Zhou et al. 2022] trained

on synthetic data or tailoring the training procedure to work exclu-

sively with real materials captured using �ash photographs [Zhou

et al. 2023a] for improved realism. An alternative research direc-

tion targets procedural material generation, using generic material
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graphs and user-driven segmentation [Hu et al. 2022] or direct gen-

eration using transformer architectures [Guerrero et al. 2022; Hu

et al. 2023]. With the exception of PhotoMat [Zhou et al. 2023a],

which is trained on a limited dataset, these material generators are

trained on synthetic dataset, creating a visual gap to real-world

material.

Recently, DMs have emerged as state-of-the-art generative mod-

els, leading to their use in multiple material generators. MatFuse

and MatGen [Vecchio et al. 2024a,b] train an LDMs-based mate-

rial generator from scratch with multiple encoders conditioned on

text, image, or sketch. Closer to our approach, Text2Mat [He et al.

2023] and Re�ectanceFusion [Xue et al. 2024] propose to leverage

pretrained di�usion models on large-scale image datasets. These

approaches �rst generate a latent representation of a natural im-

age or center-�ashed material image through pretrained DMs or

�netuning DMs. At the second stage, they train a separate decoder

to extract SVBRDF parameters, as done in the material acquisition

task. With this process, these methods bene�t from the realistic

prior of DMs; however, the reliance on an “acquisition” step leads

to typical “baked lighting” limitations. In contrast, we propose to

directly �netune a DM to output material parameters, bene�ting

from the network’s prior without the typical acquisition limitations,

and introduce a Reinforcement Learning (RL) approach to improve

realism.

Reinforcement Learning of DMs. RL has been widely used in large

language models and computer vision tasks. With the success of

DMs in text-to-image generation applications, several RL-based al-

gorithms have been proposed to improve the DMs with a goal of

�netuning a model to achieve higher reward instead of �tting a

target distribution. More speci�cally, Lee at al. [2023] incorporate

human feedback to improve text-to-image alignment of DMs. They

�netune DMs on �xed dataset sampled from pretrained DMs us-

ing reward-weighted regression (RWR) method, where denoising

process is reframed as one-step Markov Decision Process (MDP).

Built upon RWR, Dpok [Fan et al. 2024] utilizes new samples from

pretrained DMs and include KL-regularization during �netuning

process. Both RWR and Dpok are designed from a speci�c training

prompt each training loop and rely on approximate log-likelihood

due to single-step MDP. In comparison, denoising di�usion policy

optimization (DDPO) [Black et al. 2023] treats the denoising process

as a multi-step MDP, and thus is more accurate than RWR and can

incorporate many training prompts at once. Xie et al. [2024] have

demonstrated that DDPO can be applied to improve 3D consistency

of generated multi-view images. To improve realism of a material

generator, we build RealMat upon DDPO, with new base model and

self-de�ned realism reward trained using large-scale real dataset.

3 PRELIMINARIES

In this section, we brie�y introduce two techniques that are cen-

tral to our approach: image di�usion models [Ho et al. 2020] and

Denoising Di�usion Policy Optimization (DDPO) [Black et al. 2023].

3.1 Di�usion Models

Di�usion models [Ho et al. 2020] represent a distribution ? (G0 |2)

of images G0 conditioned on 2 (e.g. a text prompt embedding) by

learning to approximately invert a forward process @(GC |G0) that

maps images G0 to noisy versions of the images GC , with a noise

strength given by a time step C ∈ [0,) ]. To invert this mapping, a

network 5\ (GC , C, 2) is trained with the following loss to approximate

G0 given a noisy image GC , the time step C , and the condition 2:

E(G0,2 )∼? (G0,2 ),GC∼@ (GC |G0 ),C∼U(0,) )

[

∥ 5\ (GC , C, 2) − G0∥
2
]

. (1)

Images G0 can then be obtained by iteratively sampling small denois-

ing steps. We use a Markovian (i.e. probabilistic) DDPM sampler [Ho

et al. 2020]:

?\ (GC−1 |GC , C, 2) = N(0CGC + 1C 5\ (GC , C, 2), f
2
C I), (2)

where the factors 0C and 1C , as well as the variance f
2
C are chosen

according to the denoising schedule of the sampler, and determine

a step size that trades o� between quality and total number of steps

needed. The sequence of images g = (G) , . . . , G0) forms a denoising

trajectory in image space that starts with pure noise G) and ends

with the fully denoised image G0.

Our di�usionmodel is based on Stable Di�usionXL (SDXL) [Podell

et al. 2023], a latent di�usion model where images G are represented

in a latent space. This model can handle high-resolution 1k×1k gen-

eration. We additionally use Zero-SNR [Lin et al. 2024a], a technique

to further improve inference quality.

3.2 Denoising Di�usion Policy Optimization

Recently, it has been shown that Proximal Policy Optimization

(PPO) [Schulman et al. 2017], a form of reinforcement learning, can

be applied to re�ne di�usionmodels in an approach called Denoising

Di�usion Policy Optimization (DDPO) [Black et al. 2023]. DDPO

allows us to optimize di�usion models to maximize a potentially

non-di�erentiable reward that can be computed on the image we

obtain after multiple denoising steps (Eq. 2). This contrasts with the

traditional loss used to train di�usion models, which optimizes only

a single denoising step (Eq.1).

In PPO, a policy is trained to perform actions that maximize the

accumulated reward over a sequence of actions. In DDPO, the pol-

icy corresponds to the denoising steps ?\ (GC−1 |GC , C, 2) and actions

correspond to images GC−1 from the denoising trajectory, so that

the denoising trajectory g = (G)−1, . . . , G0) is the sequence of ac-

tions that results in the denoised image G0. DDPO then aims at

maximizing the expected accumulated reward '(g) over denoising

trajectories g :

� (?\ ) ≔ Eg∼?\ ['(g)] , (3)

In DDPO, '(g) is computed based on only the �nal denoised image

G0 (i.e., no reward is given for intermediate denoising steps). We

will de�ne the exact reward we use in Section 4.3.

To optimize this objective, we follow the formulation of Schul-

man et al. [2017], which shows that the gradient of � (?\ ) w.r.t. the

parameters \ is:

∇\ � (?\ ) = Eg∼?\

[

1
∑

C=)

'(g)∇\ log?\ (GC−1 |GC , C, 2)

]

. (4)

The expectation in this equation is approximated using multiple

trajectory samples, and the resulting gradient is used to �netune the

denoiser parameters \ . Optimization with this gradient can further

be stabilized using trust region clipping and importance sampling
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Fig. 2. A visual illustration of RealMat. (a) In the first stage, we finetune SDXL for text-to-material generation using synthetic SVBRDF maps arranged in 2 × 2

grids; (b) next, we train a realism reward (score) using a mixture of real photographs and synthetic data; (c) in a second finetuning stage, we use the reward in
a reinforcement learning (RL) strategy to further push the generated distribution towards more realistic materials.

strategies, as described in DDPO [Black et al. 2023]. Note that the

gradient of ' is not needed in the computation.

4 REALMAT

Our goal is to train a di�usion-based SVBRDF generator that pro-

duces high-�delity, diverse, and photo-realistic materials from text

prompts. The main challenge in this task is to preserve priors from

existing data sources. Pre-trained di�usion models like Stable Di�u-

sion XL [Podell et al. 2023] o�er great text alignment, diversity, and

realism, but are meant for general RGB images and cannot generate

material maps. Synthetic material datasets [Adobe 2023; Vecchio

and Deschaintre 2024] contain ground truth SVBRDF maps, but are

limited in size and do not fully bridge the realism gap. Photographed

material datasets [Zhou et al. 2023a] o�er realism, but do not have

SVBRDF ground truth and are limited in size.

Our key insight is that the large di�usion models and the com-

bination of real and synthetic data can be used to generate realis-

tic SVBRDFs. We use a two-stage approach. In the �rst stage, we

�netune SDXL [Podell et al. 2023] to generate SVBRDFs using a

synthetic material dataset (Section 4.2). This model inherits the text

alignment, diversity, and realism from SDXL, but the tuning pro-

cess moves the distribution towards a more synthetic appearance,

creating a realism gap. In the second stage, we additionally leverage

a dataset of material images (under natural lighting, not �ash) to

design a realism reward function that we can use to improve realism

using reinforcement learning with DDPO (Section 4.3). Note that we

propose a two-stage approach because the realism reward function

cannot be directly used as a loss in a single �netuning process, as

it needs to be evaluated on the material we obtain after multiple

denoising steps, and it may not be (easily) di�erentiable. We show

an overview of our approach in Fig. 2.

4.1 Datasets

Synthetic Data. We follow previous work [Vecchio et al. 2024a]

and use 8, 615 material graphs to generate ∼ 126, 000 material vari-

ations which we render under randomly selected natural environ-

ment maps to create ∼ 800, 000 pairs of renderings and material

properties. We augment this data through crops and rotations. This

data is used in our �rst stage of �netuning SDXL.

Generated Materials. Following our �rst stage of �netuning, we

can easily sample thousands of materials from text. These materials,

however, have varying degrees of realism. To train a realism reward

function, we randomly sample 2,000 materials, each of which is

rendered under 10 random environment lighting, for a total of 20,000

renderings in our Generated Materials dataset.

Real Photographs. We �lter 800,000 material photographs from

an internal image database through a nearest neighbor CLIP-based

search using FAISS [Johnson et al. 2019]. Note that although the

database contains high-quality images in general, not all material

samples are guaranteed to be realistic. Therefore, a classi�er is still

necessary to �lter out realistic data from the Real Photographs

dataset.

Data labeling. We further �lter the Generated Materials and Real

Photographs datasets for realism. Because manually annotating

both datasets entirely is impractical, we propose to train classi�ers

separately on each dataset to estimate the realism labels. Initially,

each classi�er is trained on a small subset of 2000 images manually

annotated as realistic or unrealistic. To prevent over�tting to these

small training sets, we employ simple linear classi�ers that take

CLIP embeddings of the images as input and produce probabilities

indicating realism. After training, each classi�er predicts realism

scores for the remaining unlabeled images in its respective dataset.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2025.
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We then apply empirically determined thresholds (0.2/0.4 for the

Real Photographs/Generated Materials) to generate binary realism

labels. The labels are used to train our realism reward function in

Stage 2 (Section 4.3).

4.2 Stage 1: Finetuning SDXL

We choose SDXL, trained on the large natural image dataset Laion-

5B [Schuhmann et al. 2022], as it o�ers good realism, diversity,

and text alignment, and is able to generate 1k × 1k images; it also

empirically responds well to the RL stage below.

Inspired by the 3D generation method [Li et al. 2023], in which

four multi-view images of an object are generated as a grid, we

represent SVBRDFs as a 2 × 2 grid: albedo, height, roughness and

metallic (as shown in Fig. 4). We then �netune SDXL using these

SVBRDF grids. In practice, this lets us trade spatial resolution for

the capacity to generate more channels.

Although our base model inherits much of the diversity and

realism of SDXL, the �netuning process still moves the distribution

towards a more synthetic appearance. We demonstrate this behavior

in Fig. 4, with synthetic (top row) and realistic examples (bottom

row) generated after this �netuning stage.

4.3 Stage 2: Finetuning for Realism

In Stage 2, we re�ne our material generator to close the realism gap

created in Stage 1. The unknown setting the photos were taken in

(lighting conditions, camera parameters, etc.) makes any attempt

to use a di�erentiable renderer to supervise renders of the gener-

ated SVBRDFs di�cult. In the absence of direct supervision and

di�erentiability, we use our realism reward function. Note that even

a di�erentiable reward could not be directly used as a loss in the

regular single-step �netuning setup of a di�usion model, as it needs

to be evaluated on the material we obtain after multiple denoising

steps. We instead propose to use an RL strategy to �netune our

material generator with the goal of maximizing the realism reward.

Realism reward function. The reward function has the same archi-

tecture as our realism classi�ers for datasets �ltering, without the

sigmoid activation after the last layer since we target a reward score

rather than a classi�cation. Here again, we use the CLIP [Radford

et al. 2021] features as input as they have been shown to perform

well on materials [Yan et al. 2023] and have been used to de�ne a

general image aesthetic score [Black et al. 2023]. In summary, our

score function Aq (� ) is a linear layer, mapping CLIP features to a

realism score. We use an MSE loss to train the reward function, with

an additional Total Variation (TV) [Johnson et al. 2016] regulariza-

tion, encouraging similar scores for similar inputs. Our complete

loss LA for the reward function training is:

LA = _1∥Aq (� ) − ;6C ∥2 + _2LCE
(

CLIP(� )). (5)

where ;6C represents the thresholded binary realism labels,LCE is the

TV loss term for CLIP features, and _1 and _2 weight the MSE and

TV loss terms. The accumulated reward ' in Eq. 4 is then de�ned

as:

'(g) ≔ Aq

(

6
(

3 (G0), !
)

)

with ! ∼ U(L), (6)

where G0 is the �nal denoised latent image, 3 is the VAE decoder,

and 6(-, !) renders material maps grid - . The rendering uses a

lighting environment !, sampled uniformly from a set L of 200

natural lighting environments. Note that rewards for intermediate

di�usion steps are not needed.

Training prompts. To ensure that RL training improves realism

where it is most needed, we design a set of “training prompts” which

are sampled during the training. We �rst take 1, 000 text prompts

from the image descriptions, covering 16 material categories (brick,

ceramic, fabric, �ower, granite, grass, ground, leather, leaves, marble,

metal, paper, pebble, rock, stone and wood). For each text prompt,

we sample ten materials using our �netuned material SDXL and

evaluate their realism score with our realism reward function. We

then select 6 or 7 prompts with the lowest realism within each

category, for a total of 100 prompts. This ensures improved realism

across a su�ciently diverse range of appearances, especially for

concepts that typically lacked realism before RL. We include the list

of prompts in the supplemental materials and evaluate the e�ect of

changing the number of training prompts in Section 6.3.

5 IMPLEMENTATION

SDXL �netuning. We �netune with the 1024× 1024material grids

from the Synthetic Data. We create corresponding text prompts by

combining material category names (e.g.“wood” or “metal”) with

the material names. We �netune SDXL using AdamW [Loshchilov

2017] with a learning rate of 2e−6 and batch size of 120. We set

terminal signal-noise ratio (SNR) to zero [Lin et al. 2024b], which

helps to generate a high-contrast range (e.g. colorful albedo and

solid black metallicity in the same grid). We �netune SDXL for 400k

iterations (∼ 7 days) on 24 80GB A100 GPUs.

Training realism reward function. We train our realism classi�ers

and realism reward function with a learning rate of 1e−3 and batch

size of 64. The weights of MSE term _1 and TV term _2 are set as 1

and 100 respectively. The training takes around 6 hours on a single

40GB A100 GPU.

RL training. We use 32 80GB A100 GPUs. We use 50 denoising

steps. We use a batch size of 128 (4 per GPU) and gradient accumu-

lation over two minibatches. Similar to DDPO, instead of �netuning

the entire base model, we freeze it and only �netune a Low Rank

Adaptation (LoRA) [Hu et al. 2021] with rank 4 to reduce memory

and computation cost. We �netune the model with RL for 110 epochs

(∼ 18 hours) with a �xed learning rate of 3e−4.

Rendering. We use Mitsuba 3 [Jakob et al. 2022] to render materi-

als on fully displaced meshes under 200 randomly selected realistic

HDR environment maps from Poly Haven [env 2024]. The environ-

ments are normalized to preserve the same irradiance on a �at plane

per RGB channel, to prevent overall intensity and color di�erences.

6 RESULTS AND DISCUSSION

In this section, we �rst evaluate our realism reward function numer-

ically and visually. Next, we show sampled results of RealMat from

both stages, and perform a RL �netuning user study to evaluate the

e�ect of the second �netuning stage. In addition, we ablate the e�ect
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of training prompt number on the realism RL �netuning process

and the e�ect of TV regularization in the reward function. Finally,

we compare RealMat against previous methods qualitatively and

through a second user study, demonstrating that our method can

generate realistic and diverse materials.

6.1 Realism Reward Function

We �rst evaluate the realism reward function on both real and

synthetic test sets. We �nd that on average, the reward function

estimates a realism score of 0.73 for a real test set (photographs

taken by us) and 0.516 for a synthetic test set from Vecchio and

Deschaintre [2024]. After normalization to the range [0,1] based on

max/min values (0.878/0.343), the average scores for the real and

synthetic sets are 0.723 and 0.324, respectively. This shows that our

reward function successfully acts as a material realism estimator. In

addition, in Fig. 5 we show visual examples from real and synthetic

test sets with the estimated scores.

6.2 Results of RealMat

Finetuning with Synthetic Data. We show materials and corre-

sponding renderings sampled after the �rst stage �netuning in

Fig. 4. Our model inherits the diversity and details of SDXL, and

can often generate high-quality 512× 512materials with strong text

alignment and coherent material channels. Still, this stage creates

some realism gap, moving the distribution toward a more synthetic

appearance, which motivates the second �netuning stage.

RL Finetuning for Realism. We show the progressive improvement

of RealMat during the RL �netuning with our realism reward in

Fig. 10. The leftmost image in each row is a rendering of a material

sampled from the model after the �rst stage of RealMat, before

RL �netuning, and the rightmost image after the RL �netuning is

complete.We keep the prompt and seed �xed in each row.We can see

that the realism and visual appearance of synthetic materials (�rst

three rows) gradually improve from left to right as the RL �netuning

progresses. The last row, which is already realistic after the �rst

�netuning stage, remains realistic throughout the RL �netuning. We

also show a side-by-side comparison of renderings in the initial and

�nal RL �netuning step, along with the corresponding realism score

in Fig. 3. The renderings of materials sampled after RL �netuning

display more realistic features such as natural-looking leaves, wavy

sand, and cracks in tiles.

RL �netuning user study. To further evaluate the impact of our

realism RL �netuning, we conduct a user study asking participants

to assess the realism of paired materials. In our user study interface

(see left in Fig. 6), given a material pair and its text prompt, the user

is asked to select which material looks more realistic: "left", "right"

or "similar". These paired materials are rendered under the same

lighting, with one material sampled from the model at the initial

step and the other at the �nal RL �ne tuning step, with the same

random seed. The materials of each pair are randomly ordered. We

have in total 21 sub-surveys, each of which contains approximately

20 material pairs. Participants can take more than one sub-surveys

if they desire.

black iron door with diamond pattern, 

it can also be used as a background image
the texture of the sand

seamless patterned texture 

in the form of square tiles

above photographed part of light 

ceramic tiles with gray veins

blue square tiled background
plant with green leaves and fruits 

in the garden

rusty metal texture
brown, crumpled paper, stop motion 

animation background

abstract texture of red leaves lichen on stone texture close up

brown leather close-up, production 

of handmade accessories 

made of artificial animal skin
stones in the sand

0.423 0.519

0.414 0.548

0.428 0.518

0.332 0.553

0.317 0.437

0.314 0.644

0.349 0.411

0.715 0.790

0.518 0.580

0.359 0.473

0.286 0.619

0.318 0.656

Fig. 3. We show a side-by-side comparison of renderings before and a�er RL
finetuning, together with the corresponding material maps, given various
text prompts. In addition, we show the realism rewards. This demonstrates
the impact of our training strategy both numerically and visually.

In total, we collect 32 sub-survey responses, corresponding to 641

individual feedback points. On average, 46.8% of responses prefer

the materials after realism �netuning, 28.9% of responses hold the

opposite opinion, and 24.3% �nd the results "similar". Among the

421 di�erent material pairs, 43.5% of pairs are marked as improved

after �netuning, compared with 23.0% of pairs rated as degraded.

The remaining 33.5% of pairs are considered as "similar" or "tie".

Note that all the material pairs in the user study are randomly

sampled without any data curation. This con�rms that RL �netuning

improves the realism and visual quality of sampled materials. We

further compute the 95% con�dence intervals for preference: after

�netuning [42.9%, 50.7%]; before �netuning [25.4%, 32.4%] and no

preference [21.0%, 27.6%] .

6.3 Ablation Study

E�ect of RL. We evaluate how the realism scores of generated

materials evolve using both train and test prompts as our RL �ne-

tuning progresses in Fig. 7 (a). We can see that while materials

generated using prompts from the training set bene�t most from

the RL �netuning, the bene�ts generalize well to unseen prompts.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2025.



RealMat: Realistic Materials with Di�usion and Reinforcement Learning • 7

E�ect of training prompt set size. We analyze the e�ect of training

prompt number during the reinforcement learning �netuning stage.

Both DDPO [Black et al. 2023] and Carve3D [Xie et al. 2024] claim

that �netuning on a limited set of prompts can generalize well to

test prompts, which is consistent with our observation. However, in

RealMat, we need to carefully distribute the training prompts across

all material categories. In Fig. 7 (b), we show the e�ect of training

prompt number on realism score. As shown in the �gure, even

trained on a prompt number as small as 5, the realism still improves

as training progresses but appears to be worse than prompt numbers

of 30, 100 and 150. Therefore, we choose a training prompt size of

100 in the �nal setting of RealMat as it achieves the highest realism

score based on our analysis.

E�ect of TV loss. TV loss term is added to Eq. 5 to regularize the

training of the reward realism function, with the goal of ensuring

that similar inputs yield similar realism scores. In Fig. 8, we show

a set of real stones with similar visual appearance, and the esti-

mated normalized score by realism function with and without TV

regularization. These similar stones are expected to output similar

scores based on human perceptual assessment. However, without

TV regularization (the bottom row in Fig. 8), the maximum and

minimum scores are 0.848 and 0.618 respectively, with a standard

deviation of 0.074. In comparison, the standard deviation with TV

regularization is reduced to 0.030. We conclude that the TV term is

helpful to regularize our realism reward function.

6.4 Comparison with Previous Methods

We compare RealMat against Re�ectanceFusion [Xue et al. 2024],

MatFuse [Vecchio et al. 2024b], and PhotoMat [Zhou et al. 2023a].

We used the o�cial code from MatFuse and PhotoMat, and asked

the authors of Re�ectanceFusion to sample their model with our

text prompts.

General comparison. We showmaterials generated from text prompts

rendered under a single point light to compare MatFuse, Re�ectance-

Fusion, and RealMat in Fig. 11. As shown, given only a text prompt,

MatFuse cannot generate diverse materials. We believe this is largely

due to training the model from scratch on synthetic materials, lack-

ing the important priors learned from images that Re�ectanceFusion

and our approach bene�t from. Re�ectanceFusion, on the other hand,

generates materials that closely follow the input prompt and are

overall realistic, but su�er from light-baking artifacts, since the

method is based on a base (non-�netuned) SD model that aims

to generate RGB images with highlights and shadows, which are

non-trivial to undo by the second stage of their approach. In par-

ticular, light-baking can be observed in the albedo component (all

renderings use a single, centered point light) of the Re�ectanceFu-

sion results in Fig. 11. In contrast, our approach generates materials

with higher photorealism and fewer artifacts, while preserving good

prompt alignment and diversity.

Competing methods user study. To further validate the perceptual

quality of our results, we conduct a user study with competing meth-

ods (MatFuse, Re�ectanceFusion, and RealMat) asking participants

to assess the realism and prompt alignment of generated materials.

We use a similar interface to the RL �netuning user study (right of

Fig. 6), in which participants are asked to choose the most realistic

material that also reasonably follows the accompanying text prompt

by selecting "left", "middle", "right", or "similar". The randomized

materials are rendered with the same animated lighting: a single

point light moving along a circle parallel to the material plane. We

use GIF animations with 60 frames displayed in a loop to better

assess the re�ectance behavior of the material as it is illuminated

from di�erent directions, and make any baking artifacts clear.

For this user study, we assemble a total of 110 sub-surveys, each

containing 10 unique material comparisons. Similarly to the RL �ne-

tuning study, participants can take more than one sub-survey. In

total, we collect 44 sub-survey responses, corresponding to 440 indi-

vidual comparisons without any data curation. Here, we show the

average followed by the 95% con�dence interval range. 53% [48.3%-

57.6%] of responses prefer the materials generated by RealMat, while

40% [35.6%-44.8%] opt for results from Re�ectanceFusion. Only 3%

[1.2%-4.3%] of responses choose MatFuse, and 4% [2.2%-5.9%] �nd

the materials "similar". Among the 373 unique material prompts,

RealMat is considered best for 52%, Re�ectanceFusion comes second

with 40%, MatFuse is chosen for 3%, and 5% are ties ("similar"). The

study shows that our approach generates more realistic materials

than competing methods. It also highlights the impact of leveraging

image priors, strategy shared by RealMat and Re�ectanceFusion,

which combined constitute the overwhelming majority of realistic

materials according to the participants.

PhotoMat comparison. We compare RealMat with PhotoMat, a

material generator that is exclusively trained on real �ash photos.

Results are shown in Fig. 9. Note that PhotoMat is only designed

for class-conditioned generation, without text control. Due to the

limited scale of the PhotoMat training dataset, the sampled materials

are fairly realistic but tend to lack diversity (we show sampled “stone”

of PhotoMat in Fig. 9). In comparison, RealMat leverages existing

realistic priors and produces realistic stones with greater diversity.

7 LIMITATIONS

Weobserve that detailed text control formaterial generation remains

challenging for precise descriptions (e.g. separate control of the

colors of each tile). We believe this may be di�cult due to the lack of

high-quality text prompts in material datasets. A second limitation

of our proposed approach is spatial resolution, which is traded

o� for additional channels. While this could be mitigated using

newer, high-resolution models, it makes the generalization of the

grid approach beyond 4 maps more challenging.

8 CONCLUSION

We propose RealMat, a realistic material generator trained to pre-

serve the prior knowledge in large text-to-image di�usion models

and enhance generated material realism. We �rst adapt the SDXL

model to generate materials using �netuning on 2× 2 tiled SVBRDF

grids. We further enhance the realism of generated materials by

utilizing reinforcement learning (RL) with a realism reward function

designed on a large-scale dataset of realistic images. We demon-

strate the e�ectiveness of our realism reward function and the RL

�netuning stage and show that RealMat can produce more diverse
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and photo-realistic materials compared to state-of-the-art material

generators.
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background of a woven 

leather strap close-up

texture background metal surface

eroding and being covered with rust

Small ceramic tiles pattern
 as background

mixture of sands, stone, rocks
with different size

stone wall background 

and copy space

blue fabric texture of textiles

Fig. 4. The sampled material maps and renderings of RealMat at the first
stage of fine-tuning with the synthetic dataset. Here, we partition examples
as synthetic (top row) and realistic (bo�om row) to motivate our reinforce-
ment learning realism fine-tuning stage (Sec. 4.3). In all cases, the materials
are high-quality, show consistent features across di�erent material maps,
and preserve good text alignment.
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0.683 0.860 0.772 0.726

0.699 0.655 0.651 0.764

0.636 0.695 0.658 0.573

0.838 0.642 0.801 0.773

Real Data Synthetic Data

Fig. 5. The estimated normalized realism scores from our realism reward
function. Le� shows the scores of real materials and right shows the scores
of rendered synthetic materials, demonstrating the e�ectiveness of the
realism reward function.

RL Fine-Tuning Competing Methods

Fig. 6. The user interfaces of our user studies. For the RL fine-tuning study,
text prompts and material pairs are shown to participants who need to
select the most realistic option by selecting le�, right, or similar. Similarly
for the competing methods user study, participants select the most realistic
material from three randomized options generated by MatFuse [Vecchio
et al. 2024b], ReflectanceFusion [Xue et al. 2024], and RealMat by selecting
le�, middle, right, or similar.
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Fig. 7. Plots of realism score during training: (a) Normalized realism score
plot for training and inference text prompts during the RL fine-tuning stage.
(b) The e�ect of training prompt number on the reinforcement learning
process. We show the realism score of models trained under 5, 30, 100 and
150 training prompts. Based on the plot, we choose # = 100 as final optimal
training se�ing.
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0.723 0.771 0.799 0.718 0.734 0.773 0.740

0.704 0.772 0.848 0.687 0.618 0.762 0.706

Fig. 8. We demonstrate the e�ect of TV regularization when training realism
reward function. As demonstrated, using realism reward trained without
TV loss, stones with similar appearance yield normalized scores with large
variance.

PhotoMat (stone) RealMat (stone)

Fig. 9. Comparison of sampled results of PhotoMat and RealMat (we only
focus on one specific category, “stone”). Although the PhotoMat results are
realistic, the sampled materials show limited diversity due to a small-scale
real dataset. In comparison, RealMat is trained with realistic priors and
demonstrates both strong realism and diversity.
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background of a woven leather strap close-up

texture background metal surface eroding and being covered with rust

stone wall background and copy space

Small ceramic tiles pattern as background

Fig. 10. This figure shows materials resulting from increasing levels of RL fine-tuning with realism reward, starting from no fine-tuning (le�) to fine-tuning for
110 epochs (right). RL fine-tuning progressively improves synthetic materials (top three rows), while remaining consistent for realistic materials (last row). This

demonstrates the e�ectiveness and robustness of the second stage of RealMat.

floral fabric, red 

chinese flower pattern

many leafs of ivy 

cover on bridge

seamless aluminum 

checker plate

wood planks

brown stone texture 

of dirtybricks in 

the wall of the house

brown leather close-up, 

production of handmade 

accessories made of 

animal skin

stones in the sand

RealMat ReflectanceFusion MatFuse

Fig. 11. Visual comparison between RealMat, ReflectanceFusion and MatFuse. The maps from ReflectanceFusion have light baking artifacts (marked by red

arrows), produced by a base (non-finetuned) image model, which are di�icult to undo by further processing. MatFuse produces less plausible and diverse

materials, due to exclusively synthetic training data. In comparison, RealMat generates diverse, realistic and artifact-free material maps.
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