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Chapter 1

Introduction

The generation of objects in simulated controlled environments has been an im-

portant tool for advancements in various applications in which the visualization is

part of the development of products. It can be one of the ways of prototyping or

output for real-life applications. Examples include simulation software for theoreti-

cal physics, modelling programs for architecture or medicine, and rendering engines

for entertainment. Nowadays, with the constant improvement of processors both

for general (CPU) and specific (GPU) workloads, that fit an increasing number of

transistors in their many cores, three-dimensional simulations of objects and envi-

ronments are being visualized and modified in real-time. The majority of software

options for real-time visualization of objects rely on triangle-based representations,

in which any shape can be described as a combination of triangles.

Although the triangle-based representation works well for most cases, there are

some applications, such as group-theoretic operations (eg. union, intersection), which

are not efficiently implemented in such approach, compromising the real-time capa-

bility that can be an essential feature. When describing objects via triangles, the

rendering algorithm needs to insert or remove new primitives from the scene to ap-

ply any operation which modifies an object in a non-regular manner. This results in

very inefficient operations. Therefore, a solution for dealing with such specific ap-

plications is to search for an alternative way of representing objects in a simulated

environment.

Surfaces can be implicitly defined by a function which describes the distance

from any point in space to such object, named signed distance function (SDF).
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1. Introduction

Many operations are applied to SDFs in an efficient manner [1], including the offset,

union, and intersection. Composite objects can be represented via SDFs by group

theory operations of well-defined functions of primitives.

Even with many benefits on certain operations, the SDF representation of objects

lacks the compatibility with most three-dimensional models, which are triangle-

based. Although complex objects can be constructed via group operations from

simple shapes, the complexity of the geometry directly affects the rendering per-

formance. As a result, it is infeasible to compute the signed distance function for

typical triangle representations.

Considering such limitation of SDFs, we propose an efficient solution for the

estimation of surfaces of triangle-based objects through the use of signed distance

functions. The solution is based on an octree data structure, which acts as a recipient

to store and manage distance values of a given object. It works for any closed triangle

mesh, and allows real-time visualization of operations such as the offset, the union,

and the intersection.

1.1 Applications

The software subject of this thesis has various application scenarios. Since it has

a well-defined goal to estimate triangle-based objects using signed distance functions,

it can be applied in cases needing operations that would benefit from the implicit

representation of SDFs.

Operations that can take advantage of objects defined by SDFs include the offset

operation, as well as the erosion and dilatation of complex meshes. The processing of

soft shadows and the visualization of group-theoretic operations are also significantly

faster for implicit surfaces.

Therefore, the visualization of specific operations applied on closed triangle

meshes is a viable application of our software. It can also be used for integrating

triangle-based surfaces into already existent scenes defined by SDFs.

By extending the range of efficient representations of SDFs to typical triangle

meshes, our application allows the use of this alternative way of representing objects

to previously infeasible scenarios. For instance, the visualization of simulations for
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1. Introduction

theoretic physics that require the extensive use of group-theoretic operations can use

SDFs to represent all surfaces for improved performance, including complex objects

made from triangle meshes.

1.2 Context

The context in which the application of this thesis was formulated had a working

Sphere tracing renderer [2], which is an optimized variant of a ray tracer for scenes

defined by distance functions. All the benefits of using the implicitly defined surfaces

were already in place prior to the development of the octree-based solution.

It was referred that, to solve the estimation of the SDF for triangle meshes using

an octree, the new solution would be integrated into an existing rendering engine

that used NVIDIA Falcor C++ API and DirectX High Level Shading Language.

However, due to inconsistencies in new releases of the NVIDIA API and the superior

compatibility and portability of the OpenGL shading language, the latter was chosen

for implementing the software of this thesis together with the C++ programming

language.

As previously explained, the poor performance for triangle-based inputs in the

SDF representation was a major drawback in adopting this type of surfaces descrip-

tion. Bærentzen [3] uses a simple grid to estimate the SDFs for triangle meshes. Our

new approach using the octree data structure was inspired by the aforementioned

inefficiency with SDFs and the software by Bærentzen.

It is important to note that our proposed solution only works for closed surfaces

(defined by closed meshes of triangles), due to the inside/outside partitioning of the

octree nodes during the construction. It would be possible to estimate the SDF of

initially open meshes by utilizing algorithms [4] to deduce and add missing triangles,

closing the open spaces, and resulting in a closed mesh that can be utilized by our

software.

6



1. Introduction

1.3 Thesis structure

This thesis is organized in six chapters. It starts with the introduction (Section

1), explaining the motivation, providing applications, and context for the reader.

Afterwards, it presents a detailed user guide (Section 2) for the accompanying soft-

ware, with basic and advanced manuals.

A theoretical background (Chapter 3) is provided, containing definitions needed

for the understanding of following chapters. The algorithms chapter (4), which ex-

plains every major algorithm used in the proposed software solution is presented

next. The implementation chapter (5) discusses structures and classes as well as

examines efficiency and optimization choices for the implementation of the algo-

rithms presented in chapter 4. The testing plan and some important SDF estimations

are also investigated in chapter 5. Lastly, the conclusion of the work is formulated

(Chapter 6).

The developer documentation is divided into many different chapters, providing

better indexing of the work and ease for the reader. Specific aspects of our proposed

solution are located by navigating directly to a part of the thesis for which the reader

is most interested in.

Furthermore, the decision of explaining the main steps of the solution in an algo-

rithmic pseudo-language intends to expand its applicability and readability, allowing

an easier integration to various programming languages and paradigms.

7



Chapter 2

User guide

This chapter aims at explaining the functionalities of the software to a user. It

starts by explaining the installation of the software (2.1), then presents a basic (2.2)

and an advanced (2.3) features manual.

2.1 Installation

The installation of the software can be done by extracting it in any directory

from the compressed file octsdfsolution.zip, available in the accompanying CD.

Once extracted, a folder containing the executable file octsdfsolution.exe and

three subfolders (Sources, Dependencies, and Meshes) is available. Figure 2.1 shows

the extracted folder. The Sources subdirectory contains all the source code files of

the project. Dependencies hosts the packages and other external libraries needed for

compiling the source code and executing the program. TheMeshes subfolder includes

various triangle mesh files that can be loaded and visualized by the program.

Figure 2.1: Extracted software solution.
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2. User guide

2.2 Basic Features

The user can start by executing the octsdfsolution.exe file. It will trigger the

start of the application, which then loads two windows, as can be seen in Figure

2.2. The first and main window (on the left) shows a canvas in which objects will be

rendered. The second window (on the right) is an auxiliary user interface, in which

it is possible to load new mesh files as well as visualize and modify information

regarding the execution of the program. Further information on both windows is

presented in Sections 2.2.1 and 2.2.2.

Figure 2.2: Starting screen of the program.

2.2.1 Auxiliary Window

The auxiliary window is composed of three tabs: Mesh Selection, Node List, and

Automated Testing. It is possible to visualize such tabs at the top of the window. For

this section, only the Mesh Selection tab will be explained. For further information

on the remaining tabs, see Section 2.3.

With the Mesh Selection tab selected, it is possible to see that the auxiliary

window is divided in three sections: Instructions, Mesh Loading, and Statistics. The

Instructions section provides general guidelines on how to use the program. It has

information about how to navigate the camera (explained in Section 2.2.2), it briefly

describes the two other sections of this tab (Mesh Loading and Statistics), and
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2. User guide

sums up essential information about the two other tabs (Node List and Automated

Testing).

To interact with the Instructions section, it is sufficient to click on one of its

topics, and it will show additional information for it (See Figure 2.3). By clicking

again in the topic, it will hide the previously shown additional information. It is

possible to hide all the contents of the Instructions section by clicking on its name.

If the user wants to revisit the information of this section in a later stage, clicking

on it again will show its content once more.

Figure 2.3: Expanded view of the Instructions section of the Auxiliary Window.

The Mesh Loading section has the same functionalities of hiding and showing its

content as in the Instructions section. Initially, it only has one field. This input field

accepts text, and it is needed for loading a triangle mesh file into the program. Once

the user starts typing, a new button named Load Mesh appears beneath the text

entry input field. To load a new mesh, the user should provide the full or relative

path to the file containing it. Once the path is written into the input text field, the

Load Mesh button needs to be pressed to start loading the mesh into the program.

If a valid file is given, a progress bar prompts the user about the stages of the

octree building. If the file or the path is not valid, the user is presented with a

message explaining the error and then the program waits for a next file entry. The

mesh loading is executed in a new thread independent of the user interface. This

allows a smooth experience for the user and provides instant feedback of the status

10



2. User guide

of such build through the progress bar. A representation of the Mesh Loading section

before clicking the Load Mesh button is shown on Figure 2.4.

Figure 2.4: Expanded view of the Mesh Loading section of the Auxiliary Window.

The Statistics section presents the user with the data about the execution of

the program. Initially, it only shows the informative message: "No statistics were

loaded". This happens since the program had not loaded any triangle mesh; there-

fore, no meaningful data about its execution can be provided. Once a mesh is loaded,

information about the loaded mesh (Mesh subsection), building times for different

steps of the software algorithm (Build Times subsection), and the octree (Octree

subsection) are provided. To show or hide the content of a subsection, it is sufficient

to click on its name. An additional feature is that, since the loading of a mesh is

asynchronous, statistics appear in this section as they are calculated.

In the Mesh subsection, it is possible to see information about the mesh of

triangles provided as input. It includes the file name and extension, as well as the

number of triangles in such mesh. Build Times subsection provides information

about the time of execution of every main step of the octree realization, from its

construction, to serialization. Additionally, a total building time is provided in the

end as an easy way of comparing building times for different meshes. Lastly, the

Octree subsection provides information about the octree. It includes the maximum

depth and number of nodes of the octree; provides the number of vertices in the

auxiliary graph, and the number of leaf and non-leaf nodes in the serialized arrays

of the octree.

The data displayed in the Statistics section is useful for understanding how the

octree data structure performs for specific meshes, and how costly every main step

in the octree construction is in practice. Figure 2.5 shows the Statistics section for

one of the mesh files provided as example in the Meshes subdirectory (Section 2.1),

named Suzanne.obj.
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2. User guide

Figure 2.5: Expanded view of the Statistics section of the Auxiliary Window.

2.2.2 Main Window

The main window shows the result of the rendering of objects by the software. It

presents an interactive three-dimensional simulated environment showing real-time

results obtained through the use of a sphere tracing renderer (see Section 3.1 for

further information about sphere tracing). What is seen through the Main Window

is a reflection of the processing of the scene seen by the camera in the simulated

environment.

It is possible to navigate the camera in the three-dimensional space to be able to

visualize objects from different angles and at different distances. These movements

involve the use of the keyboard and mouse. More specifically, the keys W, A, S,

D, Shift, on the keyboard, as well as the left button and the wheel of the mouse.

Table 2.1 presents information about each of the aforementioned input options for

navigation, their intended type of interaction, and the impact on the movement of

the camera within the rendered space of the Main Window.

12



2. User guide

Input key Type of Interaction Action

W Click or hold Move the camera forward

A Click or hold Move the camera to the left

S Click or hold Move the camera backwards

D Click or hold Move the camera to the right

Shift Hold Slower the pace of camera movement

Mouse wheel Scroll Change the velocity of the camera

Left button of

the mouse
Hold and drag Control the direction of the camera

Table 2.1: Mapping of input keys, their intended type of interaction, and the

impact on the camera movement.

By combining the use of the left button and the other movement keys (W, A, S,

D), the user can navigate in any direction and even set the pace of which the camera

moves slower (Shift), to be able to investigate an object from a short distance. The

additional option of scrolling the mouse wheel for adjusting to a specific velocity

improves the experience for very small or large meshes. Examples of distinct viewing

points of the same object that illustrate the movement of the camera can be seen

in Figure 2.6. It shows Suzanne.obj, a well-known mesh used for various computer

graphics applications, introduced by the Blender renderer project [5].

Figure 2.6: Different angles for rendering of the mesh included in Suzanne.obj.

13



2. User guide

2.3 Advanced Features

This section discusses of a more advanced features with the program, which

involves knowledge on how the octree works and the main steps in its build pro-

cess. The usage of both Node List (Section 2.3.1) and Automated Testing (Section

2.3.2) tabs of the Auxiliary Window, and its implications on the Main Window are

discussed. To navigate to the aforementioned tabs, it is sufficient to click on their

name.

2.3.1 Node List Tab

The Node List tab provides different ways of interacting with objects described

by the octree structure of the proposed software solution. Its interface (Figure 2.7)

contains multiple visualization options for highlighting certain aspects of an object

and the octree that constitutes it. Additionally, the interface of the Node List tab

allows the modification of parameters used in the octree build process, and the

testing of different levels of the offset operation.

Figure 2.7: Expanded view of the Node List tab.

In the top part of the tab, there are checkboxes which enable different visual-

ization options of objects in the software. It is possible to combine them to display

several additional data to the triangle mesh rendered in the Main Window.

Show SDF values and show confidence values options write SDF and confidence

values of corners of octree nodes next to their correspondent location in the simulated

environment. It is helpful to see such key values next to the SDF representation to

14
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be able to visualize if they are coherent (eg. smaller SDF values are closer to the

surface, positive SDFs are outside).

The show AABB outlines checkbox allows an essential option of visualizing the

axis-aligned bounding box of any octree node. It is especially important to under-

stand the 3D representation of an octree node and the integration between the octree

and the final rendered result. This feature also allows an easier navigation inside the

object.

By default, the coloring of AABB lines corresponds to a debugging visualization

of the validity of SDFs between vertices. When green, the line segment between

two vertices indicates that they are of same sign, asserted by the relation further

discussed in Section 8. When a segment line is yellow, it indicates that two vertices

must have opposing signs, also due to the same relation. A white-colored line in-

dicates that no assurances could be made and the signs were resolved by segment

checking (see Section 5.3.4).

When the option enable confidence color is activated, the color code for the

AABB changes to reflect visual debugging in relation to the confidence rather than

the SDF. For the confidence color code, positive confidences (indicate positive signs

of the SDF) are portrayed as shades of green. The intensity depends on the con-

fidence value between vertices. Negative confidence values are shown as shades of

blue, which also have their intensity dependent on their value. Figure 2.8 shows a

visualization of a tetrahedron with the confidence coloring activated to show octree

nodes both outside and inside.

Figure 2.8: Outside (left) and inside (right) octree nodes of mesh tetrahedron.obj.

The render triangle mesh option uses the most common rendering technique
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(rasterization) to render every triangle of the input mesh. It serves as a comparison

standard of the SDF approximation model proposed by this thesis. It is possible

to visualize the regions in the triangle mesh in which the the SDF approximation

underestimates (painted in green), and overestimates (highlighted in red) the actual

representation. Areas where the rasterization is not present show the accurate SDF

estimation of the object.

Table 2.2 provides a summary of the visualization options, referencing example

figures (2.9) for each option.

Visualization option Brief description

Subfigure

of Figure

2.9

Show SDF values
Displays SDF values of corners of octree

nodes.
b), c)

Show confidence values
Displays confidence values of corners of

octree nodes.
b), c)

Show AABB outlines Draws the AABB lines for octree nodes. a), b), c)

Enable confidence col-

oring

Switches coloring of AABB lines to re-

flect the confidence color code.
a)

Render Triangle Mesh

Renders original triangles and overlaps

them with SDF estimation. Stress colors

are applied for contrast.

d)

Table 2.2: Visualization options displayed as checkboxes in the Node List tab.

The slider bar after the checkboxes of visualization options modifies the param-

eter for the implementation of the offset operation, one of the important results of

this thesis (see Section 5.5). Such slider allows both negative and positive offsets,

which are shown in real-time.

Two additional sliders are implemented in the Node List tab which are responsi-

ble for modifying parameters used during the octree construction. Octree max depth

and Octree construction threshold are applied once the Update Octree button, lo-

cated right below the sliders, is pressed, triggering a full reconstruction of the octree

16
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a) b)

c) d)

Figure 2.9: Visualization options applied to mesh computer.obj.

structure. Depending on the size of the input mesh and the chosen parameters, the

user needs to wait until the new octree is generated.

The max depth slider alters the maximum height of the generated octree, limiting

the level of details seen in the final rendered object. The construction threshold

modifies the minimum number of triangles present in a leaf node in the octree.

This parameter is essential to the octree construction algorithm (2), and changes

the accuracy of the SDF estimation.

Lastly, a recursive list of octree nodes is shown at the end of the tab. It lists

all the nodes of the loaded input mesh, distinguishing between non-leaf and leaf,

showing its position in the three-dimensional space and its SDF. The user selects

a node by clicking on it. Once selected, the aforementioned visualization options

will be applied and available for such node in the Main Window. The same options

are also applied for the node to which the user hovers the mouse upon, allowing a

fast preview. By clicking on the selected node, or in another node, the user cancels

or changes its selection, respectively. Figure 2.10 demonstrates an expanded list of

nodes with a selected node and another node being hovered at the same time.

17
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Figure 2.10: Expanded view of the Node List tab with selected (dark blue) and

hovered (light blue) nodes.

It is also possible to apply visualization options to more than two nodes simulta-

neously. To do that, the user must hold either the Shift or Ctrl keys after selecting

a node. Shift will apply the options to the immediate child nodes of the selected

node (if non-leaf). Ctrl will apply to all child nodes of the selected node, recursively.

Therefore, to select an entire octree and to apply different visualization options, the

user can select the root node and hold the Ctrl key.

2.3.2 Automated Testing

The automated testing tab shows a testing plan for different aspects of the

project. It allows the user to apply the automated test cases with a single click.

Its interface is shown in Figure 2.11.

Figure 2.11: Expanded view of the Automated Test tab.
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To interact with the interface, the user can click the Apply test cases button to

start the test routine. As soon as each test is completed, its result will show if it was

successful or not by changing the color of its name from white (ongoing) to green

(success) or red (failure). The user is prompted with a progress bar to estimate the

remaining test cases, as seen in Figure 2.12. The user cannot initiate a new test

routine while one is in progress, and the interface handles this exception by hiding

the button when a sequence of tests is being applied.

Figure 2.12: View of the Automated Test tab during the test routine.

The automated tests are covered as part of the testing scenarios presented in

Section 5.4.
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Chapter 3

Theoretical Background

This chapter provides theoretical background for the discussion of algorithms as

well as implementation and testing of the proposed software. Concepts of sphere

tracing (3.1), (signed) distance functions (3.1.1, 3.1.2), Lipschitz continuity (3.1.3),

ray-surface intersections (3.1.4), and the octree data structure (3.2) are presented.

3.1 Sphere Tracing

Sphere Tracing is a technique which capitalizes on functions that return the

distance to their implicit surfaces (3.1.2), intersecting rays (3.1.4) and creating a final

image from these interactions [2]. It calculates ray-surface intersections, thus being

a form of ray casting. It uses signed distance functions to represent objects, which

allows important consequences explained in Section 3.1.2. Definitions are adapted

from Hart [2] and Bálint [1].

3.1.1 Distance Functions

Definition 1. The point-to-set distance defines the distance from a point x ∈ R3 to

a set A ⊆ R3 as the distance from x to the closest point in A

d(x,A) = inf
y∈A
‖x− y‖2. (3.1)

From Definition 1, a set A is inferred [2]. It is possible to define a function which

returns the distance from a point to a surface, as seen in Definition 2.
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3. Theoretical Background

Definition 2. f : R3 → [0, +∞) is a distance function if

f(p) = d(p, {f ≡ 0}) (∀ p ∈ R3) (3.2)

where {f ≡ 0} = {x ∈ R3 | f(x) = 0} is the level set surface of a set.

3.1.2 Signed Distance Functions

Definition 3. If f : R3 → R is continuous and ‖f‖ is a distance function, then f

is a Signed Distance Function (SDF).

An important aspect of SDFs is their continuity, since it allows the distance

estimation of any given point x ∈ R3. Moreover, for the use case of this thesis,

they not only provide the distance from a point to a surface, but also include the

information of whether the given point is inside (f(p) ≤ 0) or outside (f(p) >

0) the primitive whose surface is being taken into consideration. Both continuity

and inside/outside checking are essential information needed for several algorithms

included in Chapter 4.

As shown in Equation 3.2, distance functions depend on the primitive to return

the distance of a given point p to its bound. For some primitives such as spheres, this

function can be easily defined (e.g. for a unit sphere and p ∈ R3, f(p) = ‖p‖2 − 1).

However, for complex shapes it is not simple to find such equation. This limitation

can be managed by using a divide-and-conquer strategy, in which a complex shape is

divided in multiple well-defined shapes, though the algorithm complexity and com-

puting requirements may grow substantially. Such strategy is discussed in Section

3.2.

For the software solution proposed in this thesis, a discretization of signed dis-

tance functions is used. The result of this process is called Signed Distance Fields,

which holds SDF values in a sparse way. By using interpolation, an approximation

of SDF values can be recomputed at any point. In practice, signed distance fields are

stored as an octree (3.2). Any given point in the R3 can be interpolated from SDF

values stored in vertices of octree nodes to regain an approximation of the original

signed distance value, as seen in Section 4.7.
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3.1.3 Lipschitz continuity

Definition 4. Let the function f : R3 → R be arbitrary. We define the set of

Lipschitz constants as

Lip f := {L > 0 : ∀x, y ∈ R3 : ‖f(x)− f(y)‖ ≤ L · d(x, y)}. (3.3)

The function f is Lipschitz continuous if Lip f 6= ∅.

Corollary 1. Every signed distance function is Lipschitz continuous and their small-

est Lipschitz constant is 1. Formally:

∀ f : R3 → R SDF : inf Lip f = min Lip f = 1. (3.4)

Corollary 1 presents an important characteristic of signed distance functions. It

is used in the octree painting algorithm to help categorize inside/outside partitions

(Section 4.4.2). Note that dividing a function by its Lipschitz constant yields a SDF

lower bound, crucial for creating SDF estimates.

3.1.4 Ray-Surface Intersection

The ray-surface intersection is achieved by finding the least positive root of

F (t) = f(p0+t ·v0), in which p0 represents the starting point, and v0 the normalized

direction of the ray. The smallest positive root of F (t) can be found through the

recurrence sequence defined by

ti+1 = ti + F (ti), (3.5)

with initial point t0 = p0, F (ti) being the signed distance function value for a ray

of length ti. The sequence in Equation 3.5 converges if and only if the ray intersects

the implicit surface [2].

The intersection process is better illustrated in Figure 3.1, in which there is an

intersection of the ray starting at p0 and direction v0 with the surface. Dashed-lined

circles represent steps taken by every iteration of the aforementioned recurrence

sequence, stopping and converging once the intersection is completed (once ray r

first intersects surface).
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Figure 3.1: Illustration of a ray-surface intersection.

3.2 Octree

As mentioned in Section 3.1.2, one way of overcoming the need of formulation of

implicit equations for complex shapes is by using parts of the original shape which

can be described by well-known equations. Following this idea, it is necessary to

choose an efficient way of subdividing the surface. The octree data structure is the

option chosen for this software.

Octree is a data structure that subdivides the three dimensional space in eight

equal sections in a recursive manner. It is a tree in which every node has eight

children. A visual representation can be seen in the Figure 3.2. In such figure, the

spacial subdivision of a cube is exemplified in the left side, while the tree diagram,

showing eight children per node, is drawn to its right one.

Amongst the benefits of utilizing octrees, the high level of regularity and the

considerably lower memory footprint are especially important for the rendering ap-

plication subject of this thesis.

Seeing that the number of children per node is fixed, it is easier to serialize the

octree structure, crucial step needed for working with graphical processing units

(GPUs). Furthermore, since it is a tree, in the worst case, a low log(h) complexity

is applied for accessing signed distance values stored at the leaves, where h is the

height of the tree.
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3. Theoretical Background

Figure 3.2: Illustration of an octree data structure.

In the proposed application, since a triangle mesh given as input consists of well-

defined triangle primitives, the octree saves substantial memory by not storing all

triangle information. Instead, it stores the distance from a corner of a leaf node to

the closest triangle, making the model highly scalable for real-time visualization.

In other words, the execution time of scenes, made from triangles, depends on the

number of levels in the octree, not in the number of triangles in the mesh.
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Chapter 4

Algorithms

This chapter presents and explains algorithms used in the implementation

(Chapter 5). Sections are organized in the natural order of execution of the pro-

posed software solution. It starts with a generic base function that traverses all

nodes in a tree and applies routines (Section 4.1), and explains the construction

(Section 4.2) of an octree. An auxiliary graph is defined (Section 4.3) as part of the

signed distance function computation (Section 4.4). Furthermore, the optimization

(Section 4.5) and serialization (Section 4.6) of an octree, and the lookup of a serial-

ized octree (Section 4.7) are presented. For better visualization, a workflow diagram

of the most important algorithms discussed in this chapter is displayed in Figure

4.1.

Construction Optimization   Serialization Lookup

SDF Computation

Auxiliary 
Graph

Distance 
Computation

Inside/Outside 
Partition

CPU GPU

Figure 4.1: Workflow of octree algorithms following the natural order of execution.

The diagram partitions the algorithms into processing units (CPU or GPU)

intended for implementation.

25



4. Algorithms

4.1 Tree traversal

The following algorithm is responsible for applying functions in both pre-order

(f1) and post-order (f2) to every node for a (sub)tree whose root is given as a

parameter of the recursive routine described in Algorithm 1.

Algorithm 1 Tree Traversal
Funct TreeTrav(node, f1, f2)

1: f1(node) //Pre-order function call

2: Let A be the set of children of node

3: for child ∈ A do

4: TreeTrav(child, f1, f2) //Recursive call

5: end for

6: f2(node) //Post-order function call

Algorithm 1 constitutes a generic function, which works for any kind of tree,

serving as base function for complex algorithms applied to octrees that follow in

this chapter. TreeTrav ends once all nodes have been visited. A leaf node does not

contain any children, thus being the limit for the recursive call.

4.2 Octree Construction

The Octree construction utilizes the generic tree traversal algorithm (1) to apply

a function whose purpose is to build new nodes until a condition is reached. The

versatility of Algorithm 1 makes it possible that the traversal algorithm, generally

used to visit or update nodes, is applied for subdividing the root node recursively

until a full sized octree is formed. A visualization of the generated octree which

describes the mesh in Skull.obj (rendered by our software) is shown in Figure 4.2.

Preceding the call of the octree construction algorithm (2), the root node of the

octree has to be created large enough to fit all triangles of the scene to be rendered.

Once the root is created and initialized, the aforementioned tree traversal algorithm

is called with root as starting node, the construction algorithm (2) as the pre-order

function, in addition to NULL as post-order function, since it is not used.
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Figure 4.2: Visualization of octree describing the mesh contained in Skull.obj.

The octree construction algorithm (2) creates eight children for a node given as

its only parameter and it adds them to the octree. It repeats this process recursively

until the maximum depth of the octree (external parameter that can be fixed for

simplicity) is reached or there is only one triangle in a node.

The maximum depth constraint is set to prevent the octree of reaching an ex-

cessive height when encountering meshes with large number of triangles or whose

distribution of triangles include multiple sparse clusters of primitives. In the latter,

an algorithm to separate the original mesh into multiple meshes, one per cluster,

could greatly increase performance, given that it would reduce both the number of

intersection tests and the number of nodes with no triangles inside.

The constraint which establishes the minimum of two triangles per node is placed

to avoid unnecessary node subdivisions. Dividing a node that has one or zero tri-

angles would contradict one of the goals of implementing an octree: to reduce the

number of intersection tests between rays and primitives in a scene. This threshold

for the minimum number of triangles in a leaf node can be set as a parameter to
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better adapt to specific meshes, as seen in Sections 2.3.1 and 5.3.3.

Even though dividing a node with only two or three triangles might still prove

inefficient by generating more nodes than necessary, there are algorithms which can

revert many of the disadvantageous subdivisions. Thus, the default upper limit of

one triangle per node in the octree creation was chosen to avoid trivial subdivisions,

since the data structure will be optimized for nontrivial cases in a later stage (see

Section 4.5).

For each child node, triangle-cube intersections are performed to determine which

primitives are incorporated into it. Considering that there are multiple ways to solve

the triangle-cube intersection subproblem, the strategy used in the software solution

constitutes an implementation choice, being better explained in Section 5.3.3.

Algorithm 2 Octree Construction Algorithm
Funct Construct(node)

1: Let depth be the depth of node

2: Let nodetri be the triangles in node

3: Let maxdepth be the maximum depth of the octree

4: if depth < maxdepth and |nodetri| > 1 then //node is nonleaf

5: for i = 1, . . . , 8 do

6: Let childnodei be a new octree node

7: Let Ti be an empty set of triangles of childnodei

8: for triangle ∈ nodetri do //Triangle-cube intersection tests

9: if triangle intersects childnodei then

10: Ti := Ti ∪ {triangle}

11: end if

12: end for

13: end for

14: end if

4.3 Auxiliary Graph

This section defines an auxiliary graph (4.3.1), it explains the construction for

this structure (4.3.2), and it presents the closest triangles subproblem (4.3.3).
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4.3.1 Definition

The auxiliary graph stores distance and confidence values for every unique vertex

of the octree. For every leaf in the octree, there are exactly eight vertices, following

the three-dimensional visual representation in which a cube (octree node) has eight

corners.

A unique vertex is a single vertex instance referenced by one or more octree nodes.

Scenarios that exemplify the existence of more than one octree node associated with

the same vertex include neighboring octree nodes in the same level, as well as parent

and children nodes, which are placed in different levels of the octree structure.

The importance of building a separate graph for vertices instead of using the al-

ready allocated octree graph is optimizing the SDF computation. This optimization

comes from the uniqueness of the vertices. Since the octree is a regular structure,

many vertices are shared by octree nodes of different heights. By processing only

distinct vertices, the algorithm becomes significantly faster, it avoids redundancy,

and it improves maintainability while using additional memory as a trade-off.

Every vertex in the auxiliary graph holds a distance value calculated in Algorithm

5, which represents the distance from such vertex to the closest primitive in the

input mesh. The vertex also stores its confidence level calculated in Section 4.4.2,

responsible for deciding if the vertex is inside or outside the input mesh.

4.3.2 Construction

The construction of the auxiliary graph is described in Algorithm 3. It receives

two parameters: G, which is a reference to an auxiliary graph, and O, a reference to

an octree. Following the definition of auxiliary graph, eight vertices are created for

every leaf node in the octree. Then, they are connected by edges to its neighbors

of the same leaf node according to axes X, Y, and Z. The last edge links vertices in

a diagonal fashion to decrease the length of the path between such vertices. The

diagonal link significantly improves the outcome of Algorithm 6.
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Algorithm 3 Auxiliary Graph Construction
Funct AuxGCtr(G, O))

1: Let L be the set of leaf nodes in O //O represents an octree

2: for node ∈ L do

3: for i = 1, . . . , 8 do

4: Create vi new vertex in G //G represents an auxiliary graph

5: Create edges with correspondent vertices according to axes X, Y, Z

6: Create edge with correspondent vertex according to the cube diagonal

7: end for

8: end for

To obtain the set of leaf nodes in the octree, needed in Algorithm 3, one could use

Algorithm 1 to traverse the whole octree, executing the tasks only when the node is a

leaf. However, the creation of vertices in the auxiliary graph can be better optimized

by incorporating Algorithm 3 into Algorithm 2. It can be done by adding an else

clause to the if statement of line 4 of Algorithm 2. With the simple addition of such

clause, it would be possible to process the non-leaf nodes for the octree construction

algorithm, and the the leaf nodes for the construction of the auxiliary graph. This

way, both graphs are efficiently constructed simultaneously in a single traversal. We

chose to use the aforementioned strategy in the implementation of the proposed

software solution.

4.3.3 Closest Triangles Subproblem

The closest triangle subproblem queries all triangles (organized in an octree) in

the proximity of a vertex of the auxiliary graph. To achieve that, it creates new points

p ∈ R3 in the proximity of vert and searches the octree for triangles containing such

points. The closest triangles algorithm (4) takes two parameters: vert, representing

a vertex in the auxiliary graph, and O, which references an octree to be searched.

Such procedure is used as part of the distance values computation (Section 4.4.1).

The algorithm starts by calculating the smallest step (step) taken in an octree

lookup to not skip a leaf node of maximum depth, which, for an octree, can be
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trivially calculated. The diagonal of the smallest leaf is ‖rootdiag‖ · 1
2maxdepth

, where

rootdiag is the diagonal of the root node.

Then, a set of triangles T is created to allocate the closest triangles of the given

vertex vert. Computing such triangles is done by searching the octree for leaves

storing point p, which is computed by moving the vert position by vectors of size

‖step‖ and directions of cube diagonals. The idea of this lookup is to access the

neighboring nodes by querying diagonally shifted positions.

In case the searched leaf has no triangles, the algorithm adds the triangles from its

parent to set T, since the closest primitive to vert might be located in its neighbor.

Otherwise, it adds the triangles from the leaf to set T. In the end, T, returned by

the algorithm, contains all triangles from the nodes in the proximity of vert.

Algorithm 4 Closest Triangles Algorithm
Funct ClosestTri(vert, O)

1: Let diag be the diagonal of O //O represents an octree

2: Let maxdepth be the maximum depth of O

3: Let step = ‖diag‖ · (1
2
)maxdepth //Smallest step in O

4: Let cubeDiagonals be the set of normalized vectors with directions equal to the

diagonals of the cube

5: Let T = ∅

6: for diagonali ∈ cubeDiagonals do

7: Let coordv be the coordinates of vertex

8: Let p = coordv + diagonali · step

9: Let leaf ∈ O | p ∈ leaf //Finding leaf that contains p

10: Let leaftri be the triangles in leaf

11: if ‖leaftri‖ = 0 then //If leaf is empty, add parent’s triangles

12: Let parenttri be the set of triangles of the parent node of leaf

13: T := T ∪ parenttri

14: else

15: T := T ∪ leaftri

16: end if

17: end for

18: return T
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4.4 SDF Computation

The SDF computation process encompasses the distance value computation

(4.4.1) and inside/outside partitioning (4.4.2), described in this section.

4.4.1 Distance Values Computation

The computation of the distance value for a vertex is done by executing a min-

imum search of the distances between said vertex and all the primitives around it.

This can be achieved by comparing every vertex in the auxiliary graph (Section 4.3)

to all the primitives in the scene to be rendered.

However, it is not efficient to take into consideration all the primitives in every

distance calculation. Since it constitutes of a minimum search subproblem, it is

sufficient to ignore the ones furthest away from a vertex. First, Algorithm 5 uses

Algorithm 4 to query the closest triangles to a vertex. Then, it calculates the distance

value of such vertex by taking the minimum of the distances to the previously queried

triangles.

The algorithm receives two parameters: G, a reference to an auxiliary graph, and

O, a reference to an octree. The procedure iterates through all vertices in G. For

every iteration, it queries the closest triangles to a vertex, storing them in T. Then,

a simple minimum search is performed to determine the distance value of such vertex

to the closest triangle.

Algorithm 5 Distance Values Computation
Funct DFComp(G, O)

1: Let V be the set of vertices of G //G represents an auxiliary graph

2: for vertex ∈ V do

3: Let T = ClosestTri(vertex, O) //O represents an octree

4: Let df be the distance function of vertex

5: for triangle ∈ T do //Minimum search of distance values of triangles in T

6: Let trisdf be the SDF of coordv and triangle

7: df = min(df, trisdf)

8: end for

9: end for
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Even though a signed distance value can be calculated for a given point p ∈ R3

and a triangle, it is not possible to determine whether such point would receive

negative (inside) or positive (outside) value in relation to the whole mesh, only to

the single triangle taken by the SDF. This is the reason why it is called a distance

value and its sign is not considered. The inside/outside partition of the values in the

auxiliary graph is discussed in Section 4.4.2.

4.4.2 Inside/Outside Partition

Deciding the sign of distance functions for a complex mesh is not trivial. The

software solution relies on an iterative algorithm which uses mathematical conse-

quences of SDFs (3.1.3) to set signs of some distance functions of vertices with

certainty, while handling the rest by using a weighted average of its neighbors. A

visualization of nodes of opposing signs of the SDF representation of the mesh in

Skull.obj can be seen in Figure 4.3.

Figure 4.3: Octree of mesh described in Skull.obj with inside (left) and outside

(right) nodes highlighted.

There are two main attributes of vertices essential for this algorithm: confidence

and status. Confidence values are of the form −1.0 ≤ v.confidence ≤ 1.0, a
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negative confidence meaning the vertex appears inside the mesh of triangles, and

a positive being the opposite. It varies in a range to allow estimation of uncertain

vertices. A visualization of the inside and outside of mesh Tetrahedron.obj has been

presented in Section 2.3.1, and can be seen in Figure 2.8.

The status attribute represents the state of each vertex going through the robust

algorithm. It is of the form v.status ∈ { unprocessed, processed }. All vertices

are initialized with an unprocessed status, and change it to processed when the

sign of its distance function (and confidence) has been determined.

Algorithm 6 starts by creating an empty set V which will contain vertices of

unprocessed status. Next, it processes an initial vertex v0 ∈ G, guaranteed to be

outside the triangle mesh, by assigning it the maximum confidence of 1.0 and a

processed status. Then, it updates the neighbors of v0 (all vertices connected to

such vertex) and the set V. Lastly, it handles all other vertices in G by repeating the

procedure described in Algorithm 7 until V = ∅. Since G is a connected graph, it is

guaranteed that Algorithm 6 reaches all vertices in G.

Algorithm 6 Inside/Outside Partition Algorithm
Funct Partition(G)

1: Let V = ∅

2: Let v0 be an outside vertex in G

3: v0.confidence = 1.0

4: v0.status = processed

5: for n ∈ v0.neighbors do //v0.neighbors is the set of vertices connected to v0

6: Update confidence of n

7: V = V ∪ {n}

8: end for

9: while V 6= ∅ do //Ends when all vertices are processed

10: PartGraph(V )

11: end while

Algorithm 7 receives a set V of vertices as a parameter. A vertex v of maximum

confidence is extracted from the given set V and marked as processed. Then, follow-

ing the steps of Algorithm 6, it updates the confidence of neighbors of v as well as

34



4. Algorithms

the set. Since the maximum search inside a set can be costly, implementation choices

can be made for the data structure of V to increase efficiency of this operation, as

seen in Section 5.3.4.

Algorithm 7 Partition Graph Auxiliar Algorithm
Funct PartGraph(V )

1: Let v = max(V ) //Retrieve vertex with maximum confidence

2: V = V \ {v}

3: v.status = processed

4: for n ∈ v.neighbors do //v.neighbors is the set of vertices connected to v

5: if n.status = unprocessed then

6: Update confidence of n

7: V = V ∪ {n}

8: else

9: if n ∈ V then //n is being processed already

10: Update confidence of n

11: end if

12: end if

13: end for

On both Algorithms 6 and 7, the confidence of a vertex is calculated. In the

software solution, a confidence of a vertex is defined as a weighted average of the

confidence of its neighbors. In such average, the weight is composed by a floating

number dependent of a vertex and its neighbor having the same or opposite sign, as

described in Algorithm 8.

Has Same Sign Algorithm (8) receives two vertices (va, vb) as parameters and

returns a floating point number −1.0 ≤ f ≤ 1.0. First, it uses the Corollary 1

(Section 3.1.3) to check whether the Lipschitz continuity can be sufficient to define

the sign of the two vertices. It checks the relation between their SDFs and their

distance in the three-dimensional space (‖f(va) − (−f(vb))‖ > ‖va − vb‖2). If it

is true, the two vertices must be of same sign, and the algorithm can return with

maximum certainty (f = 1), since the aforementioned relation is proved for SDFs.

On the other hand, when the calculation is not conclusive, a segment check is

performed on all triangles in the proximity of both vertices. Such operation aggre-
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gates the nearby leaves and builds the union of their triangles. Then, a counting is

performed on the number of intersections between the line segment that connects

the two vertices (rab) and the aforementioned triangles.

If the counting results in an odd number, it means that the vertices are in

opposing sides of the mesh, thus it can be implied that they have opposite distance

function signs. For an even number of intersections, the vertices share the same SDF

sign. Since this operation is not as robust as using Definition 4 and Corollary 1, the

returned weights are slightly smaller in absolute value (‖f‖ = 0.99).

Even though the segment check is robust, in practice, it is still best used in closed

meshes, which is a limitation for the proposed software. For open meshes, there are

algorithms [4] which can deduce and add missing triangles resulting in a closed mesh

that can be utilized by our software.

Algorithm 8 Has Same Sign Algorithm
Funct HasSameSign(va, vb)

1: if ‖f(va)− (−f(vb))‖ > ‖va− vb‖2 then

2: return 1 //Relation using Definition 4 was enough to decide the sign

3: end if

4: Let count = 0

5: Let rab be the line segment between va and vb

6: Let T = va.leaves ∪ vb.leaves //v.leaves is the set of leaves that share vertex v

7: for triangle ∈ L.triangles do //L.triangles is the set of triangles of set L

8: if triangle intersects rab then

9: count = count+ 1

10: end if

11: end for

12: if count is even then

13: return 0.99

14: end if

15: return −0.99 //count is odd
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4.5 Octree Optimization

The optimization of a tree can have different approaches, depending on the struc-

tural limitations of the resulting object. A tree can be optimized by maintaining the

same number of nodes and reorganizing its components in a process known as tree

balancing, first introduced in AVL Trees [6]. However, in the case of our software

solution, the resulting tree needs to maintain the structure of eight children per node

and its construction is tied to the positioning of triangles in a scene. Thus, it is not

possible to balance the octree without changing the input scene.

A way of optimizing an octree, in our case, arises from its practical use. It is

possible to delete unnecessary leaf nodes, since an octree serves as structure for signed

distance fields, and, for x ∈ R3, a SDF value can be calculated by using interpolation

(see Section 3.1.2). A leaf node is considered unnecessary if its SDF values can

be computed, with a small error tolerance, by interpolating the SDF values of its

parent node. The result is a much smaller octree classified as an Adaptively Sampled

Distance Field [7]. A visualization of the effect of the optimization process can be

seen in Figure 4.4.

Figure 4.4: Octree of mesh described in Tetrahedron.obj before (left) and after

(right) its optimization process. It features a reduction of 50% on the number of

octree nodes, in this case.

Algorithm 9 describes how an octree node given as a parameter is optimized. It

starts by ignoring such parameter if the subtree whose root node is nd is of height

different than one (h 6= 1). It is equivalent to state that the height cannot be zero

or bigger than one, since h ∈ N∗. These cases are ignored since we can only remove
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nodes that are parent to eight leaves. It is not possible to remove children nodes

if nd is already a leaf (h = 0). Furthermore, it is not possible to interpolate SDF

values of non-leaf nodes, given that only leaf nodes store SDF values (h > 1).

Upon confirmation that the shape of nd is a subtree of height one, Algorithm

9 calls error estimation algorithm (10) to calculate absolute and relative errors.

Algorithm 10 does so by comparing SDF values of vertices of leaf nodes and their

interpolation from SDF values at nd. The maximum of the absolute errors and the

sum of the relative errors are calculated for all vertices of the children of the input

node and returned.

Algorithm 9 continues by checking if both errors are smaller than a predefined

optimal threshold. If so, nd is turned into a leaf by having its children nodes deleted

from the octree. An optimal threshold is a value chosen by the implementation that

best limits the error and estimates whether a leaf node is dispensable or not.

To apply Algorithm 9 to all nodes in an octree, it is sufficient to use it as a

parameter of post-order function (f2) for Algorithm 1 in conjunction with the root

node of the octree: TreeTrav(root, NULL, Opt). It is important that the optimiza-

tion algorithm is passed as a post-order function to be able to solve the recursive

case of consecutive optimizations. This way, nodes that are transformed into leaves

by Algorithm 9 can trigger an additional optimization of their parents which can be

also processed by the same function in a later stage.

Algorithm 9 Octree Optimization Algorithm
Funct Opt(nd)

1: Let h be the height of subtree with root node = nd

2: if h 6= 1 then

3: return false //Cannot be optimized if not in correct shape

4: end if

5: Let absErrMax, relErrSum = ErrorEst(node)

6: if absErrMax and relErrSum are small enough then

7: for child ∈ C do //nd is now a leaf

8: Delete child

9: end for

10: end if
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Algorithm 10 Error Estimation Algorithm
Funct ErrorEst(nd)

1: Let absErrMax = 0.0

2: Let relErrSum = 0.0

3: for child ∈ nd.children do

4: for i = 1, . . . , 8 do

5: Let sdfi be the SDF of vertex i of child

6: Let sdfProji be an interpolation of nd to vertex i

7: Let absErri = ‖sdfProji − sdfi‖

8: absErrMax = max(absErrMax, absErri)

9: relErrNum = relErrNum+ (absErri/sdfi)

10: end for

11: end for

12: return absErrMax , relErrSum

4.6 Octree Serialization

The process of serialization is done to allow the use of graphical processing units

(GPUs) to provide real-time visualization for the software solution. Since GPUs do

not support pointers to memory locations nor natively allow recursion (there are no

stacks on GPUs), algorithms such as Algorithm 12 have to adapt to these hardware

specifications. The most important adaptation, in our case, is the serialization of

the octree data structure, since it contains all the distance values in a given input

scene and feeds the rendering program executed in the GPU.

Algorithm 11 explains how the serialization can be performed by porting the

octree from a tree structure into the array of nodes (nodesArray) and array of

leaves (leavesArray). nodesArray is responsible for carrying information on the

structure of the octree by storing positions of other nodes and leaves. leavesArray

will contain only SDF values which are initially stored in leaf nodes in the octree.

Both arrays will be later copied to the GPU and used for the serialized octree lookup,

as seen in Section 4.7.

The algorithm can be called initially with node being the root node of the
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octree and have empty arrays for both nodesArray and leavesArray parameters.

The procedure starts by checking whether node is a leaf, which is a recursion base

case for recording the SDF value of such node into leavesArray.

In case node is a non-leaf, the same algorithm is recursively called for all its

children. Additionally, each child has its position recorded in the nodesArray.

Algorithm 11 Octree Serialization Algorithm
Funct Serialize(node, nodesArray, leavesArray)

1: if node is leaf then

2: Record SDF from node into leavesArray

3: return

4: end if

5: Record position of node into nodesArray

6: for i = 1, . . . , 8 do

7: Let childi be the ith child of node

8: Serialize(childi, nodesArray, leavesArray)

9: Record position of childi in nodesArray

10: end for

For simplicity, we have presented Algorithm 11 as an equivalent alternative to

do one used in our implementation. Even though Algorithm 11 provides a valid way

of serializing an octree, the strategy and code structure of the software solution uses

Algorithm 1 whenever another procedure needs to execute in the totality of the

octree. This pattern was seen previously in Sections 4.2 and 4.5. Since this is the

case for the serialization of the octree, Section 5.3.6 displays a way of adapting it to

use Algorithm 1 to navigate the octree structure.

4.7 Serialized Octree Lookup Algorithm

The lookup of a serialized octree is needed for accessing relevant SDF values

stored in such data structure. This is an algorithm that needs to comply with GPU

limitations and be heavily optimized, given that it called repeatedly for the whole

duration of the execution of our software solution. Together with hardware specifica-

40



4. Algorithms

tions, the quality of the serialized lookup algorithm has great impact on the real-time

capability of the software.

The idea of this procedure is to estimate the SDF value at p by interpolating SDF

values stored at the leaf node of the octree containing or closest to p. At this stage,

there is no information concerning triangles, their locations or distance values to p.

Rather, the octree only stores distance-to-mesh values in each of its leaf corners.

Algorithm 12 receives a 3D coordinate p ∈ R3 and arrays nodesArray and

leavesArray representing the serialized octree as parameters. Firstly, a position

variable index is set to the location of the root node in nodesArray, usually being

the first record in the array of nodes. Then, since there is no support for recursion,

a loop with upper bound being the maximum depth of the octree is used to limit

the number of times the lookup algorithm will navigate the array. This restriction

is important for the GPU compiler since it is translated to a more efficient assembly

equivalent code than if there was no upper bound in the loop (eg. while(true)).

Inside the loop, index receives the position of the child node which contains

or is closest to p. This way, index serves as a reference to the current node being

evaluated. Furthermore, it is important to stress that the algorithm finds an ap-

proximation for the SDF value of any p ∈ R3, even if it is not located inside of the

octree structure (p is outside the octree bounding box). This is secured by the fact

that interpolation can be performed in relation to the closest leaf node.

Once the index variable is set to the child node, it is checked whether such

child is a leaf. If it confirms to be so, the lookup found the correct leaf node for

interpolating. Otherwise, the loop continues to the next level in the octree structure

represented by nodesArray.

Finally, once a suitable leaf node is indicated by index, it is sufficient to inter-

polate the values stored in the position index of leavesArray to estimate the SDF

value of p returned by the algorithm.
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Algorithm 12 Serialized Octree Lookup Algorithm
Funct Lookup(p, nodesArray, leavesArray)

1: Let index be the position of the root node in nodesArray

2: Let maxDepth be the maximum depth of the octree

3: for i = 1, . . . ,maxDepth do

4: index receives the position of its child node in nodesArray containing (or

closest to) p

5: if index is of a leaf node then

6: Exit from loop

7: end if

8: end for

9: return Interpolation of p by SDF values at leavesArray[index]

Algorithm 12 concludes this chapter. Next, we discuss the implementation of the

software.
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Implementation

This chapter explains the implementation of the proposed software solution.

Firstly, a general project overview is shown (Section 5.1). Then, all the auxiliary

classes are presented (Section 5.2), preparing the way to the description of the main

class: Octree, in Section 5.3. It also discusses the testing plan (Section 5.4), and it

shows important SDF estimations of triangle-based objects (Section 5.5) generated

by our software.

5.1 Overview

The implementation of the software solution was added to an already existent

Sphere Tracing Renderer which could handle the processing of objects described by

SDFs. The new contribution allowed the renderer to efficiently work with triangle

meshes, which are the most common way of representing 3D objects, by transforming

them to signed distance fields. Essentially, octrees are handled as a special kind of

primitive that is given as input to the renderer.

Although octrees are treated as a primitive by the renderer, they need additional

processing in both CPU and GPU. In addition, they occupy memory equivalent

to the data structure created and later optimized by the algorithms described in

Chapter 4.

To better visualize the integration between the already existing renderer and

the software solution, Figure 5.1 shows a simplified Constructive Solid Geometry

[8] constructed from the union of three primitives given as input to the renderer: a
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plane and a fractal, both described by well-defined SDFs, and an octree representing

the Signed Distance Field of the Suzanne.obj mesh.

Figure 5.1: Constructive Solid Geometry of plane, fractal, and octree. The addition

of the plane to the intermediate images was implied, for simplicity. The fractal is a

primitive featured by the previously existent Sphere Tracing renderer. The octree

representation of mesh included in Suzanne.obj is a contribution of our software.

The programming language chosen for CPU processing, responsible for all the

operations up to the serialized lookup of the octree (Section 5.3.7), is the C++

programming language. It has the benefits of an object-oriented language that can
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be very useful for large projects, especially for the maintainability and scaling. At

the same time, it allows optimizations which can be checked against the generated

Assembly code, making the impact of a modification in the code very transparent to

the developer. The versatility of C++ together with its transparency makes it the

default choice for larger projects focused on efficiency, such as the software solution

of this thesis.

For the GPU part of the software, the chosen API was the Open Graphics Library

(OpenGL). It provides a portable interface designed for rendering 2D and 3D graph-

ics. It is the industry standard, being the most used rendering API, with a well

defined documentation and active community of developers. Its portability in be-

ing an open multi-platform standard is an important characteristic, since its main

competitors (Direct3D, from Microsoft, and Metal, from Apple) run only on specific

environments. The OpenGL shading language (GLSL) is the high-level shading lan-

guage used for programming according to the OpenGL API. Its syntax is based on

the C programming language, thus being a natural extension for projects using the

C++ programming language.

The software is implemented in the object-oriented paradigm, describing modules

as classes. The class diagram shown in Figure 5.2 describes how the various classes

are organized, their respective attributes, operations and relationships. Due to the

high number of operations and attributes of the Octree class, only its main methods

and attributes were displayed.

5.2 Auxiliary Classes

This section provides explanation for the auxiliary classes used by the Octree

main class. After the explanation for each class, the prototype (contents of header

files) is provided in C++ syntax. The auxiliary classes are the AABB (5.2.1), Triangle

(5.2.2), Importer (5.2.3), OctreeNode (5.2.4), and Vertex (5.2.5).

5.2.1 AABB

The AABB class represents the bounding box, which is a cube-like structure that

encompasses primitives in a 3D scene. It stores the minimum and maximum points
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Figure 5.2: Class diagram of the components of the software solution

in a primitive or a group of primitives, building a cube from those extreme points. It

is useful for many computer graphics applications, since it provides a unified shape

for every primitive which contains basic positioning information. From the minimum

and maximum points, it is possible to calculate the center and diagonal of such cube.

The center point and diagonal vector of the AABB are not stored as attributes

but rather are defined as functions, as can be seen in Code 5.1. This is done to

avoid inconsistencies when updating the values of negCorner_ or posCorner_. By

implementing them as functions, the center and diagonal values are recalculated

every time they are called. However, since they constitute of simple calculations
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helped by the inline directive, they do not require excessive processing power.

Furthermore, this implementation saves memory as a natural consequence of not

storing two extra vec3 attributes in the class.

1 class AABB

2 {

3 public:

4 AABB();

5 AABB(const glm::vec3& min , const glm::vec3& max);

6 ~AABB();

7

8 glm::vec3 negCorner_;

9 glm::vec3 posCorner_;

10 inline glm::vec3 center () const;

11 inline glm::vec3 diagonal () const;

12 };

Code 5.1: AABB class prototype

5.2.2 Triangle

The Triangle class relates to the primitive of same name. It stores the three

vertices of a triangle primitive (a, b, c) and has additional attributes negCorner_,

posCorner_ to be able to compare its instances to the ones of AABB class.

There are two Intersect methods in the Triangle class due to the function

overloading feature of C++. Both functions test the intersection of the triangle

with elements described by their parameters.

The first method uses the Separating Axes Theorem (SAT) [9] to determine

whether a given AABB cube intersects the triangle. In this algorithm, it is necessary

to calculate the projection of points in relation to an axis. Such subtask is described

in the SAT algorithm and tackled in the private function Project of the Triangle

class.

The second Intersect method receives two points p0, p1 which represent the

line segment l = p1-p0. Then, it uses a line segment-triangle intersection test de-

scribed in Badouel [10] to determine whether the triangle intersects l. The prototype

of class Triangle is shown in Code 5.2.
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1 class Triangle

2 {

3 public:

4 Triangle ();

5 Triangle(const glm::vec3& a, const glm::vec3& b, const glm::vec3&

c);

6 ~Triangle ();

7

8 bool Intersect(const AABB& aabb) const;

9 bool Intersect(const glm::vec3& p0 , const glm::vec3& p1) const;

10

11 glm::vec3 negCorner_;

12 glm::vec3 posCorner_;

13 glm::vec3 a_;

14 glm::vec3 b_;

15 glm::vec3 c_;

16 private:

17 void Project(const std::vector <glm::vec3 >& vec , const glm::vec3

axis , float& min , float& max) const;

18 };

Code 5.2: Triangle class prototype

5.2.3 Importer

The Importer class is responsible for parsing a triangle mesh input file and

creating a list of objects of class Triangle (Code 5.2) from the information of

vertices, edges, and faces of the input file. It uses the Open Asset Import Library

(Assimp) [11] to parse files from a wide variety of 3D model formats and store the

triangle information into a list of triangle instances later used by the Octree class.

Importer class inherits from a utility class SFile available from the renderer

that tackles file opening, converting file content into a string and file closing for the

software solution.

There are two methods available in the prototype of Code 5.3. The

first one is GetTriangles, which returns the triangles stored in the list

of triangles (triangles_), attribute of the Importer class. The second one

(PopulateTriangleList) uses the Assimp library to populate the local list of trian-
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gles. The latter is a private function called whenever the local list of triangles needs

to be updated.

The structure of class Importer was set up to have independent methods for re-

trieving the triangles from a local attribute (GetTriangles) and for populating the

local variable from the input file (PopulateTriangleList) to allow future improve-

ments with the detection of file modifications. A new feature could be developed

which would allow the Importer class to adapt to an input file being modified. It

would update the local list of triangles and trigger the construction, optimization,

and serialization of a new octree structure automatically whenever a file is modified.

1 class Importer : public SFile

2 {

3 public:

4 Importer(const std:: string& file);

5 std::vector < Triangle >& GetTriangles ();

6 private:

7 void PopulateTriangleList ();

8

9 std::vector < Triangle > triangles_;

10 };

Code 5.3: Importer class prototype

5.2.4 OctreeNode

The OctreeNode class describes the attributes and methods for instances of oc-

tree nodes. It contains an AABB instance for storing its position in the coordinate sys-

tem (aabb_), an array of references to intersecting triangles (triangles_id_), and

an array of references to correspondent vertices in the auxiliary graph (vertices_).

Moreover, it stores a unique hash which identifies the octree node (hash_), a boolean

variable to differentiate leaves and non-leaf nodes (isLeaf), and a function to cal-

culate the hash of its parent (parentHash). The prototype of the OctreeNode class

is displayed in Code 5.4.

It is important to notice that, in C++, structs are equivalent to classes, with the

difference being the default scope of variables and methods. Therefore, the prototype

in 5.4 can be considered a class with all elements having public visibility. Moreover,
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the reason for the parentHash function to be chosen over a new attribute to store

the equivalent value is the same as in Code 5.1: inconsistency avoidance.

Types hash_octNode and hash_ptVertex, introduced in this class, are equivalent

to a vector of three unsigned integer elements of 64 bits each (glm::u64vec3). The

renaming is done through the directive using to differentiate the hashes which

identify octree nodes and vertices (Section 5.2.5). Even though their underlying

type is the same, the renaming facilitates the readability and maintainability of the

code. These hashes are unique identifiers of octree nodes and vertices and will be

further discussed in Section 5.3.1.

1 struct OctreeNode

2 {

3 OctreeNode ();

4 OctreeNode(AABB& aabb);

5 ~OctreeNode ();

6 hash_octNode hash_;

7 std::vector <unsigned > triangles_id_;

8 AABB aabb_;

9 std::array <hash_ptVertex , 8> vertices_;

10 bool isLeaf;

11 inline hash_octNode parentHash () const;

12 };

Code 5.4: OctreeNode class prototype

5.2.5 Vertex

The Vertex class provides the model for vertices of the auxiliary graph (Section

4.3). These vertices represent points in the 3D coordinate system where corners of

octree nodes are located. They were created as a separate class to avoid repetition

of vertices shared by more than one octree node, thus making the SDF computation

algorithm (Section 4.4) faster and more efficient.

The class prototype (Code 5.5) shows that each vertex has a unique identi-

fier (hash_), and an array of references of octree nodes that share such vertex

(octLeafs_). It also stores its 3D coordinates (coords_), its SDF value (sdf_),

its confidence and temporary confidence values (confidence_ , nconfidence_),
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and the state of execution of the vertex in the SDF computation algorithm

(isProcessed).

There are two aspects of the Vertex class being modified to facilitate the im-

plementation of the SDF computation algorithm (Section 5.3.4). Firstly, the states

of execution stored in each vertex differs from the ones explained in Section 4.4.2.

For the implementation, there are three states instead of two for efficiency reasons.

Due to this fact, states are stored as an integer instead of a binary boolean value.

Secondly, the nconfidence_ attribute is added as an extra field to avoid a new

auxiliary structure for storing temporary confidence values during the algorithm.

1 struct Vertex

2 {

3 Vertex ();

4 Vertex(const glm::vec3& coords);

5 Vertex(const glm::vec3& coords , const float sdf);

6 ~Vertex ();

7

8 hash_ptVertex hash_;

9 std::vector <hash_octNode > octLeafs_;

10 glm::vec3 coords_;

11 float sdf_;

12 double confidence_;

13 double nconfidence_;

14 unsigned isProcessed;

15 };

Code 5.5: Vertex class prototype

5.3 Octree

This section explains the main class of the thesis: the Octree class. It is respon-

sible for discussing the implementation of the data structures in the Octree class

(5.3.1), the traverse of the octree (5.3.2), its construction (5.3.3), the SDF com-

putation of its vertices in the auxiliary graph (5.3.4), its optimization (5.3.5) and

serialization (5.3.6), as well as the lookup of the serialized octree (5.3.7). All subsec-
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tions except 5.3.7 implement code for the CPU, in C++. For the serialized octree

lookup, since it is executed in the GPU, GLSL was chosen for its implementation.

5.3.1 Data Structure

The octree data structure can be stored in many ways. The most common ap-

proach is to have octree node instances connected by pointers to children nodes. An

octree starts at a node called root. It also has regular nodes which point to other

(children) nodes, and leaf nodes being octree nodes pointing to non-valid elements

(NULL pointers, in C++). This way of representation allows fast addition and re-

moval of elements in the octree while having log(h) complexity for the lookup of a

node, h being the height of the octree.

Even though log(h) is considered a low complexity in algorithms, our software

solution aimed at achieving an even faster lookup in an octree. This could be done

by assigning hash codes to each octree node and storing all nodes in an unordered

map. The unordered map structure provides constant lookup time for any element,

making such operation scalable for an octree of arbitrary height. Since octree nodes

point to their children, it is still possible to add and remove elements as fast as in the

most common implementation approach. The trade-off for this optimization is the

extra memory allocated for storing the hashes in the unordered map. The prototype

for the octree data structure is shown in Code 5.6.

1 std:: unordered_map < hash_octNode , OctreeNode > nodeMap;

Code 5.6: Octree Data Structure Prototype

The hash of each octree node (hash_octNode) is a unique identifier of such

structure. As seen in Section 5.2.4, the octree node hash type is equivalent to a

vector of three unsigned integers of 64 bits each (glm::u64vec3). Since the octree

can be interpreted as a three-dimensional binary tree, three binary decisions (1 or 0)

have to be made for traversing every level of an octree. The aforementioned decisions

are stored in the three fields of the octree node hash. The hashing of an octree node

describes the path (sequence of decisions of 1 or 0) starting from the root until

a given node. This technique is an extension of the Huffman coding [12] for three
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dimensions. The root node of an octree, for our implementation, has hash h = {1,

1, 1}.

In addition to the octree data structure, the auxiliary graph is also part of the

octree class. Differently than the octree, the auxiliary graph is divided into two

structures: a list of vertices and a list of edges. It was represented in this fashion to

show interchangeable ways of representing a graph: by storing it into two different

structures for vertices and edges (auxiliary graph), or storing edges as attributes of

vertices and having a single list of vertices (octree).

Following the idea implemented in the storage of the octree nodes, the list of

vertices in the auxiliary graph is composed by an unordered map of unique hashes

which link to their correspondent vertex. The list of edges is also an unordered map

connecting vertex hashes to sets of hashes of their neighboring vertices in the graph.

The set structure was chosen to avoid duplicates generated by the auxiliary graph

construction algorithm (3) in an efficient way. Both lists of vertices and edges (Code

5.7) have constant lookup time because of their underlying unordered map structure.

1 // List of vertices

2 std:: unordered_map < hash_ptVertex , Vertex > vertexMap;

3 // List of edges

4 std:: unordered_map < hash_ptVertex , std:: unordered_set <

hash_ptVertex > > auxGraph;

Code 5.7: Auxiliary Graph Prototype

Despite being implemented with the same structure (glm::u64vec3), the hash

for vertices in the auxiliary graph (hash_ptVertex) differs in its construction strat-

egy from the aforementioned hash for octree nodes. This occurs due to the fact that

many vertices are shared between octree nodes, thus not being possible to use the

path to a single node as a unique identifier for a vertex. However, it is possible to

calculate the vertex hash from the hash of any octree node which contains it.

For every octree node hash, three unsigned integer elements are stored. To cal-

culate the hash for the eight vertices of such octree node, it is sufficient to firstly

add either 0 or 1 (indicating positioning according to an axis) to every element (add

corner), which constitutes eight possibilities. Then, eliminate the zeros to the right

of every element (simplify), making it unique for vertices, since the last zeros in
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the previously defined sequence only indicate height information on the octree and

refer to the same vertex. A one-dimension visualization of the process that generates

hashes of vertices can be seen in Figure 5.3.

Figure 5.3: One-dimension visualization of the process that generates unique hashes

for octree vertices. From binary divisions representing the octree depth, a corner is

added. Afterwards, zeros to the right are discarded in the simplification process.

The process of generating unique hashes (Figure 5.3) starts with the subdivisions

of binary numbers in a one-dimensional space, each division representing a depth

level of the octree structure. When calculating unique references to corners, the last

reference hash of a level (right-most position) represents the same corner as the first

one (left-most position). The difference being the depth of the octree of which the

hash has been calculated. Such equivalence is highlighted during the simplification

process. Zeros to the right in a binary number are discarded. The resulting references,

after simplification, are unique.

Such approach is scaled for three dimensions, resulting in the used methodology

of the proposed software solution for generating unique hashes for octree vertices in

the R3.
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5.3.2 Traversal

The implementation of Algorithm 1 uses a private template function of the

Octree class named TreeTrav. This procedure takes the same arguments as de-

scribed in the algorithm: an octree node (Section 5.2.4), and two functions for the

possibility of applying routines in both pre-order and post-order. Since it is a simple

generic function and does not contain any subproblem, it can be implemented exactly

as described in the algorithm. A template method was chosen to allow parameter

functions f1 and f2 of any type in a single, efficient, and concise implementation.

5.3.3 Construction

The construction of the octree follows the steps of Algorithm 2, constituting its

core structure. Its implementation relies on the Tree Traversal Algorithm (whose

implementation is described in Section 5.3.2) to recursively apply its core routine,

and create every node of the octree. It is implemented as a private member function

of name Construct, located in the Octree class.

Differently than the traversal procedure, Algorithm 2 requires the resolution

of multiple subproblems. These tasks usually have multiple solutions, constituting

implementation choices.

The first subproblem is presented in line 1 of the Octree Construction Algorithm

(2), in which it is necessary to query the depth of a node given as parameter. In

our implementation, the depth of a node is calculated by its hash, which is assigned

during its creation. It is trivial to calculate the depth through the hash of a node,

since it reflects the path from the root to such node in the octree. Thus, the length

of the aforementioned path (0s and 1s) of a component of the hash will constitute

the depth of a node.

The other subproblem present in the construction algorithm, in line 9, is the

triangle-cube intersection test. It is needed for deciding which triangles of the scene

have their references stored in a given node for computing the SDF in a later stage.

The method chosen by this implementation was the Separating Axes Theorem [9],

which has been previously discussed in the implementation of the Triangle class

(Section 5.2.2).
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5.3.4 SDF Computation

The SDF computation is divided in two steps: the distance values computation,

and the inside/outside partition, as seen in section 4.4. Both steps are implemented

as private member functions of the Octree class, named ComputeSDF and Paint,

respectively. The former is described by Algorithm 5, and the latter by Algorithms

6, 7, and 8.

The implementation of Algorithm 5 includes two subproblems: the SDF of a

triangle, needed in line 6, and the closest triangles subproblem (Section 4.3.3), ex-

plicitly called in line 3. The triangle SDF was extracted from an online article [13]

which aggregates signed distance functions for various primitives. The closest trian-

gles subproblem is solved by Algorithm 4. However, such procedure presents the task

of finding a leaf node containing a given point p ∈ R3, in line 9. This task is resolved

by traversing the octree starting from its root, and, in every iteration, choosing the

child node that includes p. The loop stops once a leaf is found, and such leaf node

is returned as a result.

Algorithm 6 is the main algorithm for assigning confidence levels for all ver-

tices in the auxiliary graph. The confidence_ of a vertex determines the sign of

its previously calculated distance value. The only subproblem of this procedure is

determining the initial vertex, which needs to be outside of the mesh structure (line

2). For the proposed software solution, the size of the AABB of the root node is

increased by a small factor, guaranteeing that all of its vertices will be outside of

the triangle mesh. Once this operation is performed, it is sufficient to assign any of

such vertices as the initial v0 of the algorithm.

For the implementation of Algorithm 7, there are some optimizations that can

be done to make the procedure more efficient. Firstly, when retrieving the vertex

with maximum confidence (line 1), it would be very costly to perform a maximum

search every time the function is called. To address this performance issue, vertices

in set V are stored as a priority queue, in which the vertex with highest confidence

always stays in the front of the structure. This way, the retrieval of a vertex with

maximum confidence has complexity O(1).

Secondly, in line 9, it needs to be checked whether a neighboring vertex n is a

member of set V. This task could be solved by performing a search on set V every
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time it was executed. A more efficient approach would involve sacrificing memory

by storing an extra attribute in every object of type Vertex to determine if it

was in such collection. For our implementation, a new state inqueue is assigned to

the vertex together with states processed and unprocessed. This way, it is not

necessary to search set V, and no additional memory is used for this operation.

Moreover, a simplification (which needs to be adapted in the implementation)

is done on Algorithms 6 and 7, when confidence levels of neighboring vertices are

updated. Every time a vertex v is processed, all its neighboring nodes have their

confidence values updated to reflect the new change in v. In practice, once a vertex

has been processed, its confidence should not be changed if one of its neighbors is

processed. Therefore, it is necessary to store the confidence levels of non-processed

vertices in a temporary structure and only record the confidence levels once a vertex

is processed. For the software of this thesis, the implementation for the aforemen-

tioned temporary structure is substituted for a single extra attribute for objects of

type Vertex named nconfidence_ (see Section 5.2.5).

Algorithm 8 uses the relation ‖f(va) − (−f(vb))‖ > ‖va − vb‖2 and a segment

check to calculate the confidence of two vertices having the same or opposite signs.

The significant subproblem of this procedure is the intersection of a triangle and a

line segment (line 9), crucial for the segment check. This task is solved by a well-

known method described in Badouel [10], and implemented as part of the Triangle

class (Section 5.2.2).

5.3.5 Optimization

The octree optimization has Algorithms 9 and 10 as its core structure. It can be

applied to the entirety of the octree by using Algorithm 9 as post-order function ar-

gument of the Tree Trav generic function (Section 5.3.2). The optimization process

is represented as a private member function (Optimize()) of the Octree class.

The implementation of Algorithm 9 asserts the height h of the input node (line

2) by checking whether such node is a leaf (h = 0), or if any of its children nodes

are non-leaf (h > 1), and rejecting if it either is true. Furthermore, in line 6, the

algorithm does not state the error thresholds for deleting the subtree starting in the

input node. After fine-tuning with multiple mesh experiments, our implementation
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uses 1% of the diagonal of the smallest node in the octree as the absolute error

threshold. For the equivalent relative error measurement, the mean of the relative

errors have to be less than 0.1 (indicating a 1 to 10 ratio of the absolute error/SDF

value for each vertex).

For the Error Estimation Algorithm (10), neither the type of interpolation nor

how it can be calculated are provided in line 6, given that it depends on the appli-

cation. For the software of this thesis, linear interpolation is used, since all vertices

of a node have the same importance for estimating a new point. This type of inter-

polation can be calculated by estimating the SDF value of a new point p ∈ R3 by a

weighted average of the SDF values of the known vertices, in which the weight of a

known vertex can be described as its distance to the new point (wi = ‖p− vi‖).

In the implementation of this thesis, an efficient approach is taken towards linear

interpolation. Given that the number of known vertices to be used in the estimation

is even (eight vertices for every node), they are divided equally into two vectors.

Then, both structures are interpolated with the glm::mix function [14], which ac-

cepts both units and vectors. The result of the interpolation is a new vector of same

size as one of the inputs (half of the original amount). This is repeated until a single

value is returned as a result of the interpolation. Our approach is more efficient than

performing a regular weighted average due to optimizations on vector operations.

5.3.6 Serialization

The process of serializing an octree was explained in Section 4.6. Even though a

valid, more concise alternative was presented by using recursion (line 8 of Algorithm

11), the implementation of the serialization chooses to use Algorithm 1 to map core

functions to all nodes in the octree instead of relying on recursion. This is done with

the intent of having a unified way of traversing the octree, which increases the mod-

ularity and maintainability of the software. The octree serialization is represented

as a private member function of the Octree class, denominated Serialize.

The implementation of this adaptation to use the Tree Traversal Algorithm (1)

relies on the simulation of recursion by using the stack data structure. It is possible

to record the positions of all nodes in a temporary stack, in a pre-order traversal.
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This allows each parent node to access the information of its children nodes in a

post-order traversal, since they have been already processed in pre-order.

By following such execution rule, every parent node can decide if a child node

was leaf or non-leaf (task of line 8 of Algorithm 11), and record its previously

calculated position accordingly in the array of nodes (Integer[][8]), or array of

leaves (Real[][8]), returned by the algorithm.

Additionally, it is necessary to determine to which array (node or leaves) such

position refers to. In the implementation of this thesis, a flag is set to differentiate

positions in both vectors. This flag is the last bit of the 32-bit integer number

responsible for storing the position of a node in one of the aforementioned vectors.

If set to 1, the flag indicates that the number refers to a position in the array of

leaves. If 0, it points to a spot in the array of nodes.

The last bit of the integer was chosen as a flag for simplicity and efficiency of

storing two information (the position, and to which array it refers to) in a single

32-bit value. This reduces the number of valid indices (positions) by half to fit in a

31-bit integer value. Though, in practice, it still constitutes of a very high number

of possibilities (1,073,741,824).

Both the arrays of serialized nodes and serialized leaves are stored in the Octree

class as attributes named serializedNodes_ and serializedLeafs_. These are

later moved to the octNodes_ and octLeafs_ ShaderStorageBuffer structures,

which are a representation of the buffers used in the GLSL shader program to allow

real-time visualization using GPU resources.

5.3.7 Lookup

The lookup of a serialized octree is the only operation which is not a member of

the Octree class. This occurs due to the fact that it is implemented in GLSL, being

detached from the rest of the octree building operations (Sections 5.3.2 to 5.3.6).

Its implementation follows the steps of Algorithm 12, being tailored for execution

in the GPU.

There are many abstract steps in Algorithm 12, dependent on each the imple-

mentation of the serialized octree. Firstly, in line 1, the position of the root node in

the nodesArray can vary, depending on the serialization algorithm. For our imple-
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mentation, since the nodes are processed in pre-order, the root node corresponds

to the first element (of index 0) in nodesArray.

Moreover, line 4 presents a task of finding the child node which contains or is

closest to point p ∈ R3. It can be solved by comparing the center point of the AABB

of the current node with point p in relation to the three axes X, Y, and Z. The result

of the three comparisons will result on which child node is closest p, since these

constitute eight possibilities.

An example of this solution, in two dimensions, is shown in Figure 5.4, in which

a point p is compared to the center of a quadtree (two-dimensional equivalent of

octree). In such figure, it is possible to visualize four regions described by the com-

parison between p and the center c. Point p is located on the northwest quadrant,

since its horizontal component is smaller than c.x, and its vertical component is

bigger than c.y.

Figure 5.4: Finding a child node that contains p in two-dimensions.

Algorithm 11 also does not mention how an index of a leaf node can be distin-

guished from one that refers to a non-leaf node (line 5). The implementation of this

distinction can be easily performed due to the flag incorporated into the last bit of

such integer, as seen in Section 5.3.6. It is sufficient to compare the last bit of a

given index to decide whether it points to a leaf node.
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Lastly, in line 9, the procedure returns an interpolation of point p in relation

to the coordinates of the leaf node that contains it. Following the implementation

choice of the octree optimization (Section 5.3.5), a linear interpolation is performed

and the estimated SDF for p is returned.

5.4 Testing

The testing of the software is divided into two subsections: user interface tests

(5.4.1), focused on the user experience, and the automated tests (5.4.2), providing

an overall testing for the program as a closed package.

5.4.1 User interface tests

The user interface tests target any user-level, with or without prior knowledge or

familiarity with the subject or the medium (computer) of this thesis. They involve

any input mean operated by the user and the response of the program to any action

triggered by such interactions.

One of the most important aspects of the program is to contain the basic instruc-

tions of how the user should interact with it. With that in mind, the Instructions

section of the Mesh Selection tab (Section 2.2.1) was developed to provide a brief

description of all the components of the interface.

All the interactions executed by the use of the mouse and keyboard to the Main

Window, presented in Section 2.2.2, are widely used by the gaming and simulation

industry. This was implemented to provide a familiar interface to more experienced

users, while still maintaining its simplicity for others. The aforementioned interac-

tions were included as part of the Sphere Tracing renderer, prior to the start of the

software subject of this thesis. After the integration of our solution into the renderer,

the interactions with the Main Window were tested extensively inside and outside

octree objects.

Another major aspect for the quality of user experience is the responsiveness of

the interface, even under heavy load. The octree build and update, available in both

Mesh Selection and Node List tabs, were developed in an asynchronous manner. This

feature makes the user interface responsive even when the octree is being built, while
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providing feedback through the progress bars, which are synchronized and display

the same data across multiple tabs. Synchronization tests with different input mesh

files were performed to guarantee the robustness of the program.

Moreover, all the basic and advanced interactions with the Auxiliary Window,

such as expanding and hiding sections of all tabs, and modifying values in the Node

List tab through the sliders and checkboxes, were tested to a high extent both

individually and in conjunction with others.

Stress tests were performed on buttons and all other triggers (eg. hide/expand

sections) to avoid deadlocks and other unwanted reactions, when facing adverse

user interactions. Furthermore, input items such as buttons are made unavailable

by being hidden to avoid the aforementioned unwanted use.

Lastly, for every user interaction, the program provides a feedback. When

prompted to input a path to a file in the Mesh Selection tab, for instance, the

user is prompted with a progress bar and receives a real-time updates on the octree

build procedure. When feeding incorrect file paths, an instructive message appears

explaining the reason for the error. And when a major task is completed, such as

the automated tests routine, the progress bar is hidden and a prompt is provided to

inform the user of the end of such task. Figure 5.5 shows two of the aforementioned

feedback states for the user: the incorrect file prompt, and the finished automated

tests sequence.

Figure 5.5: Examples of feedback from the program to distinct user interactions.

The interaction on the left shows a message rejecting an incorrect file input. The

one on the right shows a directive informing the end of the automated test routine.
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5.4.2 Automated tests

Automated tests were incorporated into the program to test the solution by

experimenting with known mesh files (which have been proved to be correct). This

provides a safe test of differently-shaped input meshes that stresses specific aspects of

the octree build process. In addition, basic input tests were implemented to increase

robustness under incorrect inputs, such as non-existent or non-supported files.

As seen on the right interaction of Figure 5.5, there are two sections that con-

stitute the automated testing structure: the Importer and the Octree. The Importer

section aggregates three simple tests for testing file handling. It launches three in-

stances of class Importer (Section 5.2.3) to test an empty input file, an incorrect file

path, and a valid file. Such instances are executed in a sequential way, since they do

not require extensive computing power, being almost instantaneously tested.

The second section, the Octree, refers to tests that involve the use of meshes

that have been previously tested. By testing instances of Octrees that process four

distinct well-defined meshes, the developer can test new additions to the project

solution, and the user can verify the correctness of the software.

Furthermore, each of the selected meshes used in this section have different char-

acteristics which focuses on a specific stage of the octree build. The tetrahedron.obj

mesh is made of only four triangles, being the equivalent of a triangle for closed

meshes. However, for the software, the process of estimating the tetrahedron is sim-

ilar to that of any other object. All stages of the octree building are processed, even

for such simple mesh. As a result, it can generate many unnecessary nodes during

its construction, depending on the maximum depth of the octree.

Therefore, the key process to be tested when analyzing the estimation of the

tetrahedron is the octree optimization (Section 4.5). With a well-defined optimiza-

tion, with proper error thresholds, the number of nodes in the final estimation is

reduced drastically. This way, the parameter for passing the test case of the tetra-

hedron.obj mesh is the percentage of reduction on the number of nodes during the

optimization process.

Meshes contained in Bunny.obj and Suzanne.obj are considered standard when

testing ray tracing (or sphere tracing, in our case) applications. They are made of a

considerable amount of triangles, 5002 and 968, respectively. Both test all the stages
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of the octree build process in an even manner. The application should be able to

render the aforementioned meshes as a prerequisite to process more complex shapes.

The most complex mesh of the ones present on the test cases is the Skull.obj. It

consists of 80016 triangles that describe an interesting shape. It tests the capacity of

the software solution to process large and dense sets of triangles. The performance

is less important than the capacity of correctly estimate such mesh. Thus, it is put

as a final test case to certify that the solution is scalable.

5.5 Generated SDF Estimations

This section displays important SDF estimations generated by the solution pro-

posed by this thesis. Furthermore, it uses the consequences of describing an object

by SDFs rather than regular rasterization, such as the possibility of real-time com-

puting of the offset operation, to advocate for the use of this software.

A complex estimation of the Skull.obj mesh (80016 triangles) is shown in Figure

5.6. It depicts a human skull that is an example of a highly complex mesh. Its octree

has a maximum depth of 8 and 768,000 nodes. Without a programming approach,

such as ours, that uses the octree data structure, it would not be viable to estimate

a signed distance function that would describe such mesh.

Figure 5.6: SDF estimation of the Skull.obj mesh from two different angles.
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The real-time offset operation can be performed on any object described by

SDFs, when using sphere tracing. Since our solution creates an SDF that represents

any triangle-based mesh, it is possible to extend the aforementioned universality

to all objects described by triangles. In Figures 5.7 and 5.8, it is possible to see

representations of meshes Bunny.obj and Suzanne.obj as well as their negative and

positive offset estimations.

Figure 5.7: Bunny.obj with negative offset (left), zero offset (center), and positive

offset (right).

Figure 5.8: Suzanne.obj with negative offset (left), zero offset (center), and positive

offset (right).

Another estimation made from a more heterogeneous mesh, in which there are

small and concentrated portions of the mesh, can be seen in the representation of

the Cybertruck.obj mesh (Figure 5.9). It is possible to visualize that areas such as

the tires of the truck demand more SDF computing than its ceiling, due to to the

higher level of detail in such sections. Meshes with similar characteristics reinforce
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the need to have an adjustable maximum depth parameter of the octree to be able

to portray details in deeper levels.

Figure 5.9: Estimation of the Cybertruck.obj mesh in two different angles.

Having shown important SDF estimations of triangle-based surfaces via our soft-

ware, the implementation section is finished. The conclusion of the thesis is presented

in Chapter 6.
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Conclusion

In this thesis, we presented a solution for the real-time visualization of surfaces

described by signed distance fields. Such approach was motivated by the poor per-

formance of SDFs when rendering triangle-based surfaces and it was inspired by

related work by Bærentzen [3].

A detailed user guide, with numerous illustrations and examples was divided into

two sections, focusing on different user experiences with the intention of including

all user types. Following this stress on the ease of the user and reader, chapters were

distributed in a way to maximize the time spent investigating a topic of interest.

We discussed various algorithms in a generic fashion for detachment from tech-

nologies and increased focus on problem-solving. Moreover, implementation analyses

with detailed explanations were provided to explain the steps taken to build the soft-

ware solution, and to instigate the reader to reflect on the challenges presented and

fully understand the reasons for every implementation decision.

The octree, main data structure of the solution, was analysed in an extensive

manner, including its theoretical background (Section 3.2), the discussion of many

related algorithms (Chapter 4), and its implementation choices (Section 5.3), focused

on performance and efficiency.

SDF estimations generated by our solution (Section 5.5) showed accurate es-

timations for highly complex surfaces. This fact can be seen when comparing the

estimations with the triangle-based representations by using the debugging feature

render triangle mesh, available in the Node List Tab (Section 2.3.1). Such approxi-

mations would not be possible without the use of an acceleration structure such as
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the octree.

Our proposed solution that aimed at a real-time visualization of triangle meshes

defined by SDFs achieved not only its goal, but also provided a simple user interface

for interacting with such rendering. This allowed the real-time use of operations (eg.

offset) that take advantage of SDFs.

Further improvements can be made in the software to allow the estimation of

open meshes natively. This would require a new method for defining the inside and

outside of a surface.

Moreover, as a future work, parallel-focused optimizations can be performed on

the most resource-demanding steps of the octree build process. Multiple threads

could be implemented to handle independent parts of the octree construction, SDF

computation, and inside/outside partition, taking advantage of the multiple cores

present in most current CPUs.

Finally, this thesis presented a new approach for solving the inefficiency of signed

distance functions in dealing with surfaces defined by triangle meshes. It used an

octree data structure and showed relevant SDF estimations for complex meshes.

As a result, SDFs can be used to describe typical triangle-based objects in many

applications, such as modelling software and rendering engines.
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