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We propose a neural approach for estimating spatially varying light selection

distributions to improve importance sampling in Monte Carlo rendering,

particularly for complex scenes with many light sources. Our method uses a

neural network to predict the light selection distribution at each shading

point based on local information, trained by minimizing the KL-divergence

between the learned and target distributions in an online manner. To ef-

ficiently manage hundreds or thousands of lights, we integrate our neu-

ral approach with light hierarchy techniques, where the network predicts

cluster-level distributions and existing methods sample lights within clusters.

Additionally, we introduce a residual learning strategy that leverages initial

distributions from existing techniques, accelerating convergence during

training. Our method achieves superior performance across diverse and

challenging scenes.
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1 Introduction

Monte Carlo (MC) rendering is the gold standard for offline render-

ing and is widely adopted in the film industry, where photorealistic

results are critical. With this widespread adoption, the demand

for rendering increasingly complex scenes has grown, particularly

those with many light sources. Even computing direct illumination

in such scenarios presents significant challenges, as efficient render-

ing requires identifying the light sources that contribute the most at

each shading point by accounting for the light intensity, geometry,

visibility, and material properties (see Fig. 1).

A group of techniques [Conty Estevez and Kulla 2018; Fernandez

et al. 2002; Liu et al. 2019; Moreau et al. 2022; Pantaleoni 2019;

Paquette et al. 1998; Tokuyoshi et al. 2024; Vévoda et al. 2018; Walter

et al. 2005; Wang et al. 2021; Yuksel 2019] address this problem by
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constructing a light hierarchy (e.g., using a binary tree) where lights

are grouped based on criteria such as spatial position, intensity, or

other characteristics. These methods then adaptively determine a

cut through the hierarchy and define the importance of the clusters

along the cut. Clusters are sampled with probabilities proportional

to their importance, with either a representative light from the

selected cluster being evaluated [Walter et al. 2005] or subtrees

being traversed to evaluate individual lights [Conty Estevez and

Kulla 2018; Yuksel 2019]. A key limitation of these approaches is

that importance is computed without considering visibility, which

can result in frequently sampling occluded lights (see Fig. 1).

To address this problem, several methods [Donikian et al. 2006;

Fernandez et al. 2002; Pantaleoni 2019; Vévoda et al. 2018; Wang et al.

2021] propose progressively improving the sampling distributions

during rendering by incorporating visibility. All these techniques

utilize complex spatial data structures to track cluster importance

during the online learning process and they mainly differ in their

optimization strategies. Despite their ability to account for visibility,

these methods optimize a single distribution for groups of shading

points in each subspace, ignoring significant variations within the

subareas (see Fig. 1).

In this paper, we address these limitations by estimating a spatially

varying light selection distribution using a neural network. Unlike

prior approaches that rely on complex spatial data structures to

track and optimize cluster importance, our network directly outputs

the distribution for each shading point based on its local informa-

tion (e.g., position and outgoing direction). This eliminates the need

for maintaining and querying such data structures, while enabling

the estimation of spatially varying distributions across all shad-

ing points. To train the network, we minimize the KL-divergence

between the learned and target distributions, where the target dis-

tribution is approximated using Monte Carlo (MC) sampling.

To efficiently handle scenes with a large number of light sources

(hundreds or thousands), we propose combining our neural ap-

proach with existing light hierarchy techniques. Specifically, we

construct a light hierarchy and define our cut as all the nodes at a

certain height of the tree. The neural network predicts the distribu-

tion over these clusters, while existing methods are used to sample

lights within each cluster. Furthermore, we enhance convergence

by utilizing the cluster distribution from existing techniques as an

initialization and training the network to estimate the residual.

Although inspired by neural path guiding methods [Dong et al.

2023; Huang et al. 2024; Müller et al. 2019] that focus on continu-

ous selection of the ray directions, our formulation is specifically

designed for discrete light selection. This distinction is critical for

handling scenes with a large number of light sources, where finding

many important, but sparsely distributed lights, in the directional

domain may be challenging.
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Fig. 1. We illustrate a scene with three light sources of increasing bright-

ness. Accurate light sampling requires considering factors such as light

intensity, the BRDF, and visibility. The light with the highest contribution

at each shading point, accounting for all factors, is indicated by red arrows.

Sampling based solely on illumination magnitude leads to over-sampling

light 2 at shading point x1, even though it does not contribute due to the

directional constraints of the BRDF. Similarly, methods that consider both

light intensity and the BRDF [Conty Estevez and Kulla 2018; Yuksel 2019]

heavily sample light 1, which is occluded and thus does not contribute

to the reflected light. Properly incorporating all three factors reveals that

light 0 should be sampled more frequently at x1. While learning-based

techniques [Pantaleoni 2019; Vévoda et al. 2018; Wang et al. 2021] incor-

porate visibility into their framework, they compute a single distribution

for clusters of shading points (indicated by the gray dashed box), failing

to capture critical local variations. For instance, light 0 dominates at x1,
whereas light 2 contributes most at the neighboring point x2, underscoring
the importance of spatially varying distributions.

Wedemonstrate that ourmethod outperforms existing approaches

on diverse and challenging scenes.

In summary, our contributions are as follows:

• A neural approach for learning light selection distributions

for effective importance sampling.

• A hybrid method that integrates the neural approach with

light hierarchy techniques to efficiently manage scenes with

large numbers of light sources.

• A residual learning strategy to reduce the startup cost and

improve convergence during training.

2 Related Work

Many Light Rendering. Early approaches [Kok and Jansen 1994;

Shirley et al. 1996; Ward 1994] address scenes with many lights by

distinguishing between important and unimportant light sources,

thereby reducing the number of shadow rays traced. Several meth-

ods propose clustering lights by sampling the entries of the light

transport matrix [Hašan et al. 2007; Hašan et al. 2008; Huo et al.

2015; Ou and Pellacini 2011], assuming that it is of low-rank.

A more widely adopted approach to tackle this problem involves

building a light hierarchy to form clusters [Fernandez et al. 2002;

Paquette et al. 1998]. Specifically, Walter et al. [2005] define clusters

by finding a cut through the light tree and sampling representative

lights at each cluster. Subsequent works [Conty Estevez and Kulla

2018; Liu et al. 2019; Moreau et al. 2022; Tokuyoshi et al. 2024; Yuksel

2019] make the sampling process unbiased by traversing the tree

stochastically and sampling individual light sources. However, a

significant limitation of these techniques is their failure to account

for visibility during sampling.

Learning-Based Light Sampling. A large number of recent meth-

ods incorporate visibility into light sampling in a data-driven man-

ner, either through preprocessing [Georgiev et al. 2012; Wu and

Chuang 2013] or online updates [Donikian et al. 2006; Fernandez

et al. 2002; Pantaleoni 2019; Vévoda et al. 2018; Wang et al. 2021].

These approaches typically rely on spatial data structures to track

distributions, learning a single distribution for a group of shading

points within a subregion. However, this approach fails to capture

fine-grained variations in the distribution.We address this limitation

by learning spatially varying distributions using a neural network.

Resampled Importance Sampling. Resampled importance sampling

(RIS) [Talbot et al. 2005] provides a framework for rendering meth-

ods to importance sample from complex distributions. It achieves

this by first drawing samples from a simple proposal distribution,

then selecting a subset of these samples based on weights derived

from a complex, unnormalized distribution that accounts for factors

such as material, geometry, and visibility at each shading point.

Since its introduction, resampling techniques have been extended

to real-time rendering, most notably in spatiotemporal reservoir

resampling (ReSTIR) [Bitterli et al. 2020] and its variants for global

illumination, including ReSTIR-GI [Ouyang et al. 2021] and ReSTIR-

PT [Lin et al. 2022]. These methods demonstrate exceptional real-

time performance in complex, many-light scenarios. Many-light

sampling approaches, including ours, are complementary to these

techniques, as they can be used to improve the candidate distribu-

tions for resampled importance sampling frameworks like RIS and

ReSTIR, ultimately enhancing their results.

Path Guiding. Path guiding techniques perform importance sam-

pling over the directional domain. Some methods rely on data struc-

tures, such as binary and quad trees [Müller et al. 2017; Rath et al.

2020; Vorba et al. 2019; Zhu et al. 2021b], to store fitted distributions.

More recent approaches utilize neural networks to fit target distri-

butions, either offline [Bako et al. 2019; Huo et al. 2020; Zhu et al.

2021b,c] or online [Dong et al. 2023; Huang et al. 2024; Lu et al. 2024;

Müller et al. 2019]. However, fitting accurate distributions for scenes

with many sparsely distributed lights remains challenging, limiting

the effectiveness of these techniques in such scenarios. Nonethe-

less, path guiding methods are complementary to light sampling

approaches, as their combination with multiple importance sam-

pling (MIS) is often required to handle diverse scenes effectively.

While our approach draws inspiration from neural path guiding,

we diverge by focusing on a novel formulation for the discrete do-

main, rather than learning a continuous distribution over the 2D

directional domain.

3 Neural Light Selection Importance Sampling

We aim to estimate the reflected light, 𝐿𝑜 (x, 𝜔𝑜 ), in direction 𝜔𝑜
at point x, due to direct lighting. This is defined as the sum of

contributions from all the light sources:
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𝐿𝑜 (x, 𝜔𝑜 ) =
𝑀∑︁
𝑦=1

𝐿𝑦 (x, 𝜔𝑜 ) =
𝑀∑︁
𝑦=1

∫
𝐴𝑦

𝐹 (x, z, 𝜔𝑜 ) 𝑑𝐴𝑦 (z) (1)

where𝑀 is the total number of light sources. Moreover, the contri-

bution of 𝑦th light source is obtained by integrating 𝐹 over its area

𝐴𝑦 . The integrand, 𝐹 , models the interaction of light emitted from

z, a point on the light source, with the surface and is defined as:

𝐹 (x, z, 𝜔𝑜 ) = 𝐿𝑖 (x, z) 𝑓𝑠 (x, 𝜔𝑜 , z) 𝐺 (x, z), (2)

where 𝐿𝑖 (x, z) represents the radiance emitted from z toward x,
𝑓𝑠 (x, 𝜔𝑜 , z) refers to the bidirectional reflectance distribution func-

tion (BRDF), and𝐺 (x, z) accounts for geometry and visibility terms.

To facilitate efficient computation of the summation in Eq. 1, we

express it as an expectation over 𝑌 ∼ 𝑝 (𝑦) as follows:

𝐿𝑜 (x, 𝜔𝑜 ) = E
[
𝐿𝑌 (x, 𝜔𝑜 )
𝑝 (𝑌 )

]
(3)

where 𝑝 (𝑦) is the probability mass function (PMF) and defines the

probability of selecting the 𝑦th light at point x and for outgoing

direction 𝜔𝑜 . For brevity, we omit the explicit conditioning on x and
𝜔𝑜 in the notation of the distribution, though these dependencies

remain implied. Note that this equality is valid as long as 𝑝 (𝑦) is
nonzero wherever the light contribution 𝐿𝑦 (x, 𝜔𝑜 ) is nonzero.

This expectation can be approximated using 𝑁 independent sam-

ples of light indices, 𝑌𝑗 ∈ {1, . . . , 𝑀} and 𝑌𝑗 ∼ 𝑝 (𝑦), with the follow-

ing Monte Carlo (MC) estimator:

⟨𝐿𝑜 (x, 𝜔𝑜 )⟩ =
1

𝑁

𝑁∑︁
𝑗=1

𝐿𝑌𝑗
(x, 𝜔𝑜 )
𝑝 (𝑌𝑗 )

. (4)

The choice of 𝑝 (𝑦) has a substantial impact on the variance of this

estimator. To reduce the variance, the light selection PMF, 𝑝 (𝑦),
should closely match the distribution of the numerator. To achieve

this, we propose to model 𝑝 (𝑦) using a neural network, 𝑝𝜃 (𝑦), pa-
rameterized by 𝜃 , and train it in an online manner.

Note that computing 𝐿𝑦 (x, 𝜔𝑜 ) requires evaluating the integral
in Eq. 1 and is also performed through MC integration by randomly

sampling a point z on the light source. As in prior work on light

sampling [Conty Estevez and Kulla 2018; Wang et al. 2021; Yuksel

2019], we use standard techniques [Hart et al. 2020; Shirley et al.

1996] to perform this.

In the subsequent sections, we detail our optimization strategy

for training 𝑝𝜃 (𝑦) and describe our efficient network architecture.

3.1 Optimizing the Light Selection Network

Our goal is to train our light selection network so that our learned

PMF 𝑝𝜃 (𝑦) closely matches the target distribution 𝑞(𝑦), the details
of which will be discussed later. To this end, we propose to minimize

the KL-divergence between the target and learned PMFs as follows:

𝐷KL (𝑞, 𝑝𝜃 ) =
𝑀∑︁
𝑦=1

𝑞(𝑦) log 𝑞(𝑦)
𝑝𝜃 (𝑦)

. (5)

To minimize this loss, we need to take its derivative with respect

to the network parameters 𝜃 as follows:

∇𝜃𝐷KL (𝑞, 𝑝𝜃 ) = −
𝑀∑︁
𝑦=1

𝑞(𝑦)∇𝜃 log 𝑝𝜃 (𝑦), (6)

where the gradient of 𝑞(𝑦) is omitted as the target PMF is indepen-

dent of 𝜃 . Expressing this gradient as an expectation over𝑌 ∼ 𝑝𝜃 (𝑦):

∇𝜃𝐷KL (𝑞, 𝑝𝜃 ) = − E
[
𝑞(𝑌 )
𝑝𝜃 (𝑌 )

∇𝜃 log 𝑝𝜃 (𝑌 )
]
, (7)

allows us to effectively approximate it using an MC estimator:

⟨∇𝜃𝐷KL (𝑞, 𝑝𝜃 )⟩ = − 1

𝑁

𝑁∑︁
𝑗=1

[
𝑞(𝑌𝑗 )
𝑝𝜃 (𝑌𝑗 )

∇𝜃 log 𝑝𝜃 (𝑌𝑗 )
]
, (8)

where the samples 𝑌𝑗 are drawn from the learned PMF 𝑝𝜃 (𝑦). We

now explain our process of obtaining the target distribution. As

discussed, to reduce the variance of the MC estimator in Eq. 4, we

would like our learned distribution to match the light contributions.

Therefore, we define the target distribution as follows:

𝑞(𝑦 |x, 𝜔𝑜 ) = 𝐿𝑦 (x, 𝜔𝑜 )𝐿𝑜 (x, 𝜔𝑜 )−1 . (9)

Here, 𝐿𝑦 (x, 𝜔𝑜 ) represents the reflected radiance at point x in direc-

tion 𝜔𝑜 caused by a single light source. Similarly, 𝐿𝑜 (x, 𝜔𝑜 ) denotes
the radiance due to all light sources combined (see Eq. 1). Note that

the second term in the above equation ensures that 𝑞 is a valid PMF

(summing to one).

Obtaining𝐿𝑦 (x, 𝜔𝑜 ) requires evaluating the integral in Eq.1, which
we approximate using Monte Carlo (MC) integration with point

sampling. Specifically, we sample the integrand, 𝐹 (x, z, 𝜔𝑜 ), at ran-
domly selected points z on the 𝑦th light. The second term, 𝐿𝑜 (x, 𝜔𝑜 ),
is unknown because it represents the quantity we aim to estimate.

However, since our optimization process relies on Adam [Kingma

and Ba 2015], which updates parameters based on the ratio of the

current gradient to its historical average, this term can safely be

omitted [Dong et al. 2023; Müller et al. 2019].

Combining all the components, the final MC estimate of the

gradient can be written as:

⟨∇𝜃𝐷KL (𝑞, 𝑝𝜃 )⟩ = − 1

𝑁

𝑁∑︁
𝑗=1

[
𝐹 (x,Z𝑗 , 𝜔𝑜 )

𝑝 (Z𝑗 |𝑌𝑗 )𝑝𝜃 (𝑌𝑗 )
∇𝜃 log 𝑝𝜃 (𝑌𝑗 )

]
. (10)

Here, 𝑝 (z|𝑦) is the probability of selecting point z on the 𝑦th light

source, which is evaluated using existing methods [Hart et al. 2020;

Shirley et al. 1996] and is not learned in our method.

This formulation shows that optimizing the loss is equivalent

to minimizing the negative log likelihood weighted by the MC

estimates of the integrand 𝐹 . Therefore, the loss can be efficiently

optimized during path tracing in an online manner.

3.2 Network Architecture

Our network, implemented in tiny-cuda-nn [Müller 2021], is com-

posed of 3 hidden layers of 64 neurons and ReLU intermediary

activation. We encode the inputs using [Dong et al. 2023]’s learn-

able dense grid encoding for the intersection position, and spherical

harmonics with degree 4 for normalized outgoing ray direction 𝜔𝑜
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Eq. 12

estimating cluster distribution sampling lights tracing paths

...

Fig. 2. We present an overview of our technique. (left) The network uses local information at the shading point to estimate cluster probabilities in a residual

manner. The baseline cluster distribution, w, is precomputed using existing approaches and remains fixed throughout the process. (middle) A light is sampled

in two stages: first, a cluster (one of the red nodes) is selected based on the estimated cluster distribution, and then the tree is stochastically traversed (green

lines) to choose a specific light within the cluster. (right) Points are subsequently sampled within the selected light source, and paths are traced. These samples

are used to train the network and refine the estimated cluster distribution. This entire process is repeated iteratively until the desired number of samples is

traced. Since the network estimates the cluster PMF in a residual manner, it can guide sampling from the beginning of the rendering process.

so we can model the product of radiance and BSDF. We additionally

provide normal as the input to the network as done in similar learn-

ing tasks [Dong et al. 2023; Müller et al. 2019], and encode them

through one-blob encoding [Müller et al. 2019] using 32 bins.

4 Neural Light Cluster Sampling

The network described in the previous section directly estimates

the probability of selecting each light source. While this approach is

feasible when the number of light sources𝑀 in the scene is relatively

small (e.g., order of tens), directly estimating the PMF for a large

number of light sources (e.g., hundreds or thousands) requires a

high-capacity network, which significantly increases computational

complexity and makes the approach impractical.

Inspired by existing methods [Conty Estevez and Kulla 2018;

Yuksel 2019], we address this issue by adopting a clustering strat-

egy. Specifically, we group the lights into a smaller set of 𝑆 non-

overlapping clusters, L𝑐 , with 𝑐 ∈ 1, . . . , 𝑆 . This allows us to de-

compose the light selection PMF 𝑝 (𝑦) into two distributions: the

probability of selecting cluster 𝑐 , 𝑝 (𝑐), and the conditional proba-

bility of selecting the 𝑦th light within cluster 𝑐 , 𝑝 (𝑦 |𝑐). We use the

network to model the cluster selection PMF 𝑝𝜃 (𝑐), while the light
selection within each cluster is efficiently handled using existing

hierarchy techniques [Conty Estevez and Kulla 2018; Yuksel 2019].

A key advantage of this clustering approach is that it allows

us to leverage existing methods to construct the light hierarchy,

which also provides initial cluster probabilities. Building on this,

we propose a residual learning strategy, where the network learns

corrections to these initial probabilities rather than predicting them

from scratch, significantly improving training convergence.

The overview of our approach is illustrated in Fig. 2. In the fol-

lowing sections, we describe the light hierarchy and clustering, the

network optimization process, and our residual learning strategy.

4.1 Light Hierarchy and Cluster Construction

Given a scene, we first construct a light hierarchy using an existing

technique [Conty Estevez and Kulla 2018; Yuksel 2019]. The nodes

at a specified level 𝑘 of the tree are selected as light clusters (global;

fixed for the entire scene), and our network estimates their probabil-

ities. As shown in Fig. 3, the tree is typically unbalanced in practical

scenarios, so the number of internal nodes at level 𝑘 may not always

equal 2
𝑘
. In such cases, we include leaf nodes from higher levels as

part of the clusters, allowing the network to directly estimate the

probability of a leaf node that corresponds to a single light source.

For instance, in the example shown in Fig. 3, the network outputs

probabilities for the 7 cluster nodes (highlighted in red).

To sample a light source, we first select a cluster based on the

cluster selection PMF 𝑝𝜃 (𝑐). Next, we traverse the tree from the

selected cluster to a leaf node, selecting one child node at each step

based on their PMFs. These PMFs are computed using the same

method used to construct the light hierarchy [Conty Estevez and

Kulla 2018; Yuksel 2019]. The conditional light selection PMF 𝑝 (𝑦 |𝑐)
is then determined by multiplying the probabilities of all child nodes

along the traversal path, as illustrated by the green lines in Fig. 3.

4.2 Optimization

We optimize the cluster selection network using the formulation de-

scribed in Sec. 3.1. Consequently, the gradient of the KL-divergence

loss can be approximated in a manner similar to Eq. 10. The key

difference is that the light selection PMF is now expressed as the

product of the cluster selection PMF, estimated by the network, and

the light selection PMF within a cluster, computed using existing

methods. Substituting 𝑝𝜃 (𝑦) with 𝑝 (𝑦 |𝑐)𝑝𝜃 (𝑐) in Eq. 10, we derive

the approximated gradient:

⟨∇𝜃𝐷KL (𝑞, 𝑝𝜃 )⟩ = − 1

𝑁

𝑁∑︁
𝑗=1

[
𝐹 (x,Z𝑗 , 𝜔𝑜 )

𝑝 (Z𝑗 |𝑌𝑗 )𝑝 (𝑌𝑗 |𝐶 𝑗 )𝑝𝜃 (𝐶 𝑗 )

∇𝜃 log
(
𝑝 (𝑌𝑗 |𝐶 𝑗 )𝑝𝜃 (𝐶 𝑗 )

)]
.

Since 𝑝 (𝑦 |𝑐) is independent of 𝜃 , we can simplify the log term as:

⟨∇𝜃𝐷KL (𝑞, 𝑝𝜃 )⟩ = − 1

𝑁

𝑁∑︁
𝑗=1

[
𝐹 (x,Z𝑗 , 𝜔𝑜 )

𝑝 (Z𝑗 |𝑌𝑗 )𝑝 (𝑌𝑗 |𝐶 𝑗 )𝑝𝜃 (𝐶 𝑗 )

∇𝜃 log𝑝𝜃 (𝐶 𝑗 )
]
. (11)

By optimizing this objective, the network increases the likelihood

of clusters that correspond to light samples with high contribu-

tions, while reducing the likelihood of clusters associated with light

samples with low contributions.
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k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

Fig. 3. Given a light hierarchy constructed using an existing

method [Conty Estevez and Kulla 2018; Yuksel 2019], we select

nodes at a specific level (𝑘 = 3 in this example) as light clusters, with the

network estimating their probabilities 𝑝𝜃 (𝑐 ) . The probability of selecting

an individual light (e.g., the blue leaf node) is computed as the product of

the cluster probability and the conditional probability of the light given the

cluster, 𝑝 (𝑦 |𝑐 ) . The conditional probability is obtained by multiplying the

probabilities of the child nodes along the tree traversal path (green lines).

Note that the grayed-out nodes are used solely for defining the global

clusters and are not involved in sampling or evaluating the PMF.

4.3 Residual Learning

As discussed, training is performed in an online manner during

the rendering process. We use the randomly initialized network

to generate samples that are used as training data to update the

network. This process is iteratively continued until a desired number

of samples are traced. However, this process has two major issues:

(1) the network requires a large number of iterations to converge to

a meaningful PMF due to its random initialization, and (2) during
this phase, the generated samples exhibit high variance, increasing

the noise in final rendering and hindering effective training.

To address these issues, we observe that existingmethods [Conty Es-

tevez and Kulla 2018; Yuksel 2019] estimate cluster probabilities

using carefully designed rules, which are significantly better than

the initial PMF predicted by the network. Therefore, we propose

to use these cluster probabilities as a baseline, with the network

predicting the residual. When combining the network’s estimate

with the baseline, two key requirements must be met: (1) all cluster
probabilities must be positive, and (2) their sum must equal one.

We satisfy the first requirement by performing the combination

in the log domain, ensuring that all values remain positive after

applying the inverse log operation, while the second requirement is

met by normalization. Specifically, given the importance weights

(where probabilities are normalized importance weights) for all

nodes in a cluster, w = 𝑤1, . . . ,𝑤𝑆 , we compute the final cluster

PMF by combining the network’s output with these importance

weights as follows:

𝑝𝜃 (𝑐) =
𝑒 [log(𝑤𝑐 )+𝑓𝜃 (x,𝜔𝑜 ) [𝑐 ] ]∑𝑆
𝑠=1 𝑒

[log(𝑤𝑠 )+𝑓𝜃 (x,𝜔𝑜 ) [𝑐 ] ]
, (12)

where 𝑓𝜃 (x, 𝜔𝑜 ) [𝑐] is the estimated residual for the 𝑐th cluster.

This approach addresses the aforementioned issues effectively.

Initially, the cluster probabilities are close to those estimated by

existingmethods because the randomly initialized network produces

outputs near zero. This ensures that the generated samples at the

start are comparable to those from the baseline approach. As training

progresses, the network refines its predictions, resulting in cluster

PMFs that consistently improve upon the baseline.

Table 1. Equal-time comparisons measured in FLIP [Andersson et al. 2020]

with number of samples per pixel for eight representative scenes. We com-

pare our approach against ATS [Conty Estevez and Kulla 2018], SLCRT [Lin

and Yuksel 2020], ReSTIR [Bitterli et al. 2020], and VARL [Wang et al. 2021].

We color code the first , second , and third lowest numbers.

ATS SLCRT ReSTIR VARL Ours

Bathroom 0.1659 212 0.1413 220 0.1744 135 0.1346 139 0.0977 175

Bedroom 0.3129 192 0.2442 196 0.2796 123 0.1960 123 0.0910 157

Bistro 0.1548 163 0.2656 165 0.2837 74 0.2281 60 0.1126 168

Living Room 0.1247 194 0.0977 194 0.1314 131 0.1009 131 0.0671 146

San Miguel 0.2253 159 0.3015 158 0.2817 110 0.2472 107 0.1713 164

Staircase 0.0763 198 0.0817 203 0.1059 129 0.0946 138 0.0529 160

Staircase2 0.1020 233 0.0925 233 0.1132 159 0.0854 149 0.0646 191

Zero Day 0.1647 222 0.1455 223 0.1682 159 0.1338 161 0.1117 201

5 Results

In this section, we present visual and numerical comparisons to

demonstrate the effectiveness of our approach. Specifically, we

compare our method against ATS [Conty Estevez and Kulla 2018],

SLCRT [Lin and Yuksel 2020], ReSTIR [Bitterli et al. 2020], and

VARL [Wang et al. 2021]. The ATS implementation [Conty Estevez

and Kulla 2018] is available in PBRT v4, while we have implemented

the other three approaches. ReSTIR is implemented with 𝑀 = 32

samples with 𝐾 = 3 spatial reuse samples on a radius of 30 pixels.

For VARL, which is designed for CPU, we convert their sequential

update to a batch update to make it compatible with GPU. Our VARL

implementation is significantly faster than the original version and

produces better results (see supplementary material).

5.1 Comparisons

We perform equal-time and equal-sample comparisons on eight

scenes that contain complex lighting. The number of lights per scene

is: Bathroom (4.7k), Bedroom (7.9k), Bistro (21.1k), LivingRoom

(64), Staircase (6.7k), Staircase2 (2.1k) and ZeroDay (8.9k). For

San Miguel, we trace 139k virtual point lights (VPLs). For all the

results, we compare direct illumination at first non-specular bounce.

We perform all comparisons and ablations on an Intel i9-14900KCPU

and an NVIDIA RTX4090 GPU. Here, we report quantitative results

using FLIP [Andersson et al. 2020]. Evaluation using additional

metrics can be found in the supplementary. In all comparisons,

we use ATS [Conty Estevez and Kulla 2018] to construct the light

hierarchy, and we estimate node probabilities using our network

at level 𝑘 = 6. For optimization, we use the Adam [Kingma and Ba

2015] optimizer with default parameters and a fixed learning rate

of 3 × 10
−2
, and choose a training budget of 15% for our method.

Equal Time. All approaches are compared both quantitatively

(Table 1) and qualitatively (Fig. 4) in an equal time setting with the

time budget increasing with scene complexity and resolution. For

Bathroom, Bedroom, Living Room, Staircase, and Staircase2,

we allocate a budget of 5 seconds to each approach. For San Miguel

and Zero Day, we allocate 10 seconds, while, for Bistro, 20 seconds

are allocated. As shown, our approach produces significantly better

results than the others, both numerically and visually. In particular,
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Fig. 4. Equal-time comparison of ATS [Conty Estevez and Kulla 2018], SLCRT [Lin and Yuksel 2020], ReSTIR [Bitterli et al. 2020], VARL [Wang et al. 2021], and

our method. The time budget increases with scene complexity and resolution. For Bathroom, Bedroom and Living Room, the budget is 5 seconds; Zero Day

and San Miguel 10 seconds.
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Fig. 5. Equal-sample comparison against several state-of-the-art methods. We use 128 spp for all the scenes.
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LI

P

F

Fig. 6. Equal-time convergence plots of all the approaches on the eight scenes. The time budget increases with scene complexity. For all scenes, the second

vertical line is approximately where our method stops learning and uses the learned distributions to sample the remaining paths.

LI
P

F

Fig. 7. Equal-sample convergence plots of all the approaches on the eight scenes from 8 to 128 spp. The second vertical line is approximately where our

method stops learning and uses the learned distributions to sample the remaining paths.

Table 2. Equal-sample comparisons measured in FLIP [Andersson et al.

2020] with runtime in seconds. All the scenes are rendered using each

approach for 128 samples per pixel.

ATS SLCRT ReSTIR VARL Ours

Bathroom 0.2059 2.8 0.1791 2.9 0.1780 4.7 0.1399 4.3 0.1090 3.9

Bedroom 0.3780 3.2 0.2962 3.2 0.2757 5.2 0.1913 4.8 0.0994 4.4

Bistro 0.1704 15.9 0.2944 15.3 0.2316 36.8 0.1658 44.3 0.1180 19.6

Living Room 0.1488 3.2 0.1162 3.3 0.1387 5.2 0.1023 4.6 0.0689 4.8

San Miguel 0.2454 7.9 0.3233 8.1 0.2675 12.4 0.2308 11.7 0.1842 8.6

Staircase 0.0923 3.3 0.1002 3.2 0.1060 4.9 0.0969 4.7 0.0553 4.5

Staircase2 0.1246 2.7 0.1128 2.8 0.1206 4.0 0.0913 4.1 0.0721 3.8

Zero Day 0.1929 5.1 0.1699 5.0 0.1771 8.1 0.1465 7.0 0.1224 7.0

our method best handles specular reflections (see the red insets

for Bathroom and Zero Day in Fig. 4), and seamlessly learns lo-

cal lighting variations such as shadows (see the green insets for

Bathroom and San Miguel).

Equal Sample. We compare all the approaches in an equal sample

setting to evaluate their effectiveness regardless of speed. We render

each scene using 128 samples per pixel, report the FLIP [Andersson

et al. 2020] metric in Table 2, and compare all methods qualitatively

in Fig. 5. Similar to equal-time results, our method ranks first in

all scenes despite training for only 15% of the allocated samples.

Additionally, our approach shows competitive runtime against fast

tree-based approaches, highlighting the small overhead of our neural

training and sampling strategies.

Convergence Analysis. To understand the convergence behavior

of our approach, we plot the FLIP [Andersson et al. 2020] metrics

of rendered images in equal-time (Fig. 6) and equal-sample (Fig. 7).

Overall, our approach consistently produces better results than all

Direct
0.0829

4.7

SLC
0.0699

4.9

GT
LIPF

Time (s)

ATS (Ours)
0.0689

4.8

SLCRT
0.0693

4.9

Fig. 8. Comparison of residual learning strategy using SLC [Yuksel 2019],

SLCRT [Lin and Yuksel 2020], and ATS [Conty Estevez and Kulla 2018]

baseline methods against the version of our technique where the cluster

probabilities are directly estimated by the network (Direct). As shown,

residual learning with any baseline method produces significantly better

results than direct estimation with minimal timing overhead.

other methods, especially at higher spp counts. We note that, in

some scenes, other methods produce better results initially in equal-

time scenarios, but our performance improves significantly once

the training phase ends and we can trace more samples.

5.2 Ablations

Residual Learning. Figure 8 compares our proposed residual learn-

ing approach using SLC [Yuksel 2019], SLCRT [Lin and Yuksel 2020],

and ATS [Conty Estevez and Kulla 2018] baseline methods to di-

rect network prediction. The results show that residual learning

greatly speeds up convergence while adding only minimal runtime

overhead, with ATS chosen as our baseline since it ranks first.

Input Encoding. Encodings for input position are evaluated in an

equal-sample setting in Fig. 9. It compares identity, frequency [Milden-

hall et al. 2020] (12 frequencies), one-blob [Müller et al. 2019] (32

bins), and the learnable dense grid [Dong et al. 2023] encodings,

with the latter being chosen because it exhibits the least noise.

Training Budget Ratio. Figure 10 shows that training budget ra-
tios significantly influence quality in an equal-time setting. A 15%
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Identity
0.0832

4.4

Frequency
0.0773

4.4

GT
LIPF

Time (s)

Dense Grid (Ours)
0.0689

4.8

One-blob
0.0732

4.6

Fig. 9. Evaluation of input encodings for the position in the equal-sample

Living Room scene. As shown, the learnable dense grid [Dong et al. 2023]

performs best with a small overhead.

LI
P

F

Fig. 10. Impact of training budget ratios on the quality of the final render,

measured in FLIP [Andersson et al. 2020], for the Living Room scene with 5

seconds of time budget. We choose the optimal ratio of 15%.

Table 3. Analysis of the effect of continuous representation and the cluster

level. On the left, the results show that our approach is superior to a discrete

version in all scenes. On the right, the comparisons indicate that the cluster

level 𝑘 = 6 performs best on most scenes. We use the FLIP [Andersson et al.

2020] metric and highlight the lowest (best) scores in bold.

Effect of Continuous Representation Cluster Level

Ours Discrete Ours k=4 k=6 k=8

Bathroom 0.1138 0.1090 0.0969 0.0977 0.1081

Bedroom 0.1027 0.0994 0.0924 0.0910 0.1021

Bistro 0.1321 0.1217 0.1269 0.1157 0.1237

Living Room 0.0778 0.0689 0.0617 0.0665 0.0668

San Miguel 0.1891 0.1841 0.1856 0.1713 0.1782

Staircase 0.0732 0.0695 0.0683 0.0630 0.0672

Staircase2 0.0758 0.0721 0.0712 0.0646 0.0673

Zero Day 0.1387 0.1224 0.1230 0.1117 0.1377

training ratio achieves the highest quality in the 5-second Living

Room scene, and similar trends are observed across all scenes.

Effect of Continuous Representation. Table 3 (left) evaluates the
impact of our continuous representation versus a discrete alternative.

The discrete version takes as input the center of the nearest uniform

grid cell with resolution 32x32x32 and the normalized outgoing

ray direction discretized into 8 buckets per dimension [Wang et al.

2021]. As seen, our method benefits from continuous input in all

scenes, demonstrating its ability to encode local variations.

Cluster Level. We assess how varying cluster levels (see Fig. 3)

affects the final result. Table 3 (right) shows numerical comparisons

for three cluster levels (𝑘 = 4, 6, 8) on all scenes. The comparisons

indicate that the chosen 𝑘 = 6 performs best in most scenes.

6 Conclusion, Limitations, and Future Work

We have presented a neural light importance sampling approach for

rendering scenes with many lights. Our method employs a neural

network to predict spatially varying light selection distributions us-

ing local information at each shading point. The network is trained

0.003
0.0859 F

Learning Rate
LIP

0.03
0.0671

Fig. 11. Comparison of learning rates in the equal-time Living Room scene.

Using an aggressive learning rate of 3 × 10
−2

yields lower noise levels than

a more stable learning rate of 3 × 10
−3

at the cost of outlier fireflies.

online by minimizing the KL-divergence between the learned and

target distributions. To efficiently handle scenes with a large number

of lights, we integrate our neural approach with existing light hierar-

chy techniques. Additionally, we introduce a residual training strat-

egy to improve convergence. Extensive experiments demonstrate

that our approach outperforms existing methods on challenging

scenes with complex lighting.

Despite its superior performance, our approach has some limita-

tions. For instance, in some cases, it produces outlier fireflies due

to our aggressive optimization strategy. During training, the net-

work may assign low probability (in initial iterations) to important,

unobserved light clusters. If a light with high power from such a

cluster is sampled, it significantly contributes to the final pixel color,

causing the outlier. Using a more conservative optimization strategy

produces fewer outliers but results in slower convergence (Fig. 11).

Furthermore, we use a fixed global cut for the entire scene and rely

on existing methods to sample lights within a cluster. Consequently,

if the baseline method produces poor light sampling probabilities,

our approach cannot fully correct these errors. One way to address

this limitation is to locally adapt the cut, as demonstrated in ex-

isting methods [Pantaleoni 2020; Wang et al. 2021]. We leave the

combination of our approach with this strategy for future work.

Moreover, we have focused solely on learning the light sampling

distributions. However, sampling points within light sources also

significantly impacts the variance of the Monte Carlo (MC) esti-

mator, particularly for larger light sources. Learning the sampling

distribution within a light source is another avenue for future work.

Finally, we are interested in combining our approach with Zhu et

al.’s method [2021a] to effectively handle scenes with a large num-

ber of complex luminaires. The key challenge lies in formulating

a framework that seamlessly optimizes both our network and the

luminaire network, which we leave for future exploration.
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