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1 VARL GPU Implementation

We compare our GPU implementation of VARL [Wang et al. 2021] in
PBRT v4 [Pharr et al. 2023] versus the original CPU implementation
in PBRT v3 [Pharr et al. 2016] provided by the authors. Although
numerical comparisons are infeasible due to differences in PBRT
versions, we show an equal-sample qualitative comparison on two
scenes (Living Room, Staircase2) in Fig. 1. As seen, our imple-
mentation generates results with less apparent noise and fewer
discretization artifacts while being an order of magnitude faster. Ad-
ditionally, the runtime speed-up increases with higher light counts:
in Living Room (64 lights), the gain is approximately 10x, while in
Staircase2 (2.2k lights) the gain increases to approximately 38x.

2 Global Illumination

Following existing many-light methods [Conty Estevez and Kulla
2018; Lin and Yuksel 2020; Wang et al. 2021; Yuksel 2019], we show
only direct illumination (and indirect illumination via VPLs) in the
main paper. However, here we present comparisons for global il-
lumination in the form of path tracing with multiple importance
sampling (BSDF sampling for indirect rays and a many-light method
for next-event estimation) using six bounces. Figure 2 shows an
equal-time comparison of our method against ATS [Conty Estevez
and Kulla 2018], SLCRT [Lin and Yuksel 2020], and VARL [Wang
et al. 2021] on two scenes. Note that we do not compare against
ReSTIR [Bitterli et al. 2020] since it is designed for 1-bounce direct
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illumination defined in screen space. As seen, our approach pro-
duces significantly better results, both visually and numerically, for
Bistro. For Bedroom, the differences between various approaches
is generally small, mainly because the noise from indirect illumina-
tion dominates the results. Nonetheless, our approach still produces
the best results both numerically and visually on this scene.

3 Additional Convergence Analysis

We complement the convergence analysis from the main paper by
evaluating with an additional metric: mean absolute percentage
error (MAPE) in Figs. 3 (equal-time) and 4 (equal-sample). As seen,
our method ranks first in all scenes for both equal-sample and equal-
time scenarios.
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Fig. 1. Equal-sample comparison (256spp) between the original VARL [Wang et al. 2021] CPU implementation in PBRT v3 [Pharr et al. 2016] and our GPU

implementation in PBRT v4 [Pharr et al. 2023] (VARL GPU). As seen, VARL GPU shows fewer discretization artifacts while being an order of magnitude faster.
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Fig. 2. Equal-time global illumination comparison of ATS [Conty Estevez and Kulla 2018], SLCRT [Lin and Yuksel 2020], VARL [Wang et al. 2021], and our

method. The time budget increases with scene complexity and resolution. For Bedroom, the budget is 5 seconds; Bistro 20 seconds.
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Fig. 3. Equal-time convergence plots of all the approaches on the eight scenes measured in mean absolute percentage error (MAPE). The time budget increases

with scene complexity. For all scenes, the second vertical line is approximately where our method stops learning and uses the learned distributions to sample

the remaining paths.
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Fig. 4. Equal-sample convergence plots of all the approaches on the eight scenes from 8 to 128 spp measured in mean absolute percentage error (MAPE). The

second vertical line is approximately where our method stops learning and uses the learned distributions to sample the remaining paths.
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