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1. Sampling Derivation

Here, we discuss the process of sampling from the learned PDF for
both cases of nearest and linear interpolations. Given a randomly
generated value between 0 and 1 with uniform distribution u the
goal is to obtain ϵ′ such that:

u =
∫ ϵ′

0
p̂w(ϵ|C) dϵ (1)

Nearest Neighbor We start by breaking down the integral into two
terms:

u =
∫ i

M

0
p̂w(ϵ|C) dϵ+

∫ ϵ′

i
M

p̂w(ϵ|C) dϵ, (2)

where i is the index of the first bin for which u is greater than the
first integral term. Computing the second integral as the area of the
bar (see Fig. 2 of the paper; top-left) corresponding to v[i] from i/M
to ϵ′ we have:

u = P̂w(
i

M
|C)+v[i](ϵ′− i

M
), (3)

where we have replaced the first integral in Eq. 8 with the CDF at
i/M. Therefore, we can obtain ϵ′ as follows:

ϵ′ =
i

M
+

u− P̂w(
i

M |C)
v[i]

. (4)

Linear Similar to the nearest neighbor case, we break down the
integral in Eq. 1 into two terms:

u =
∫ i−0.5

M

0
p̂w(ϵ|C) dϵ+

∫ ϵ′

i−0.5
M

p̂w(ϵ|C) dϵ, (5)

where again i is the index of the first bin for which u is greater
than the first integral term. Since p̂w(ϵ|C) between the bounds of
the second integral is linear, we can write it as:

u = P̂w(
i−0.5

M
|C)+

∫ ϵ′

i−0.5
M

mϵ+b dϵ, (6)

where m and b are the slope and y-intercept of the line passing
through (v[i− 1], i−0.5

M ) and (v[i], i+0.5
M ). Calculating the integral

we have:

u = P̂w(
i−0.5

M
|C)+ m

2
ϵ′2 − m

2
(

i−0.5
M

)2 +bϵ′−b
i−0.5

M
. (7)

We rewrite this equation by grouping the quadratic A, linear B,
and constant C terms as follows:

u = Aϵ′2 +Bϵ′+C. (8)

This equation has two solutions, one of which is invalid. We
choose the maximum of the two numbers if the slope m is positive,
and the minimum of the two for negative m. Note that the bound-
ary conditions where i = 0 or M is handled in a special manner
depending on whether ϵ corresponds to θ or φ.

2. Equal-Sample Comparisons

Quantitative and Qualitative. We compare our technique against
Müller et al. [MGN17] (PPG), Rath et al. [RGH∗20] (Variance),
Müller et al. [MMR∗19] (NIS), and Dong et al. [DWL23] (NPM)
in an equal sample count setting to show the effectiveness of our
technique in learning the target distributions. We render each scene
using 750 samples per pixel (spp) and report the trimmed relative
mean squared error [RKZ11] (relMSE) with a threshold of 0.1%
averaged over 10 independent runs in Table 7. As seen, our linear
interpolation variant ranks first in all scenes, with nearest neigh-
bor in second or third, depending on the scene. Additionally, our
method with linear interpolation has a small overhead compared to
nearest neighbor, but produces better results on all the scenes. We
show visual comparisons on six selected scenes in Fig. 3. Our re-
sults consistently exhibit less noise than faster methods, and better
results than NIS, demonstrating the effectiveness of our method in
modeling the target distribution for a fixed number of samples.

Convergence Analysis. We further analyze the convergence be-
havior of our approach in an equal-sample setting in Fig. 1. Similar
to our quantitative results, we observe best results for our approach
in all scenes.
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Table 1: Equal-time comparison (120s) of our method with lin-
ear interpolation with (DF-L) and without (DF-L NC) radiance
caching. Radiance caching impact varies by scene, with higher
gains for scenes with difficult light paths.

DF-L NC DF-L

BATHROOM 0.2281 1231spp 0.2106 1131spp
BEDROOM 0.0153 1390spp 0.0138 1328spp
BREAKFAST 0.0183 2191spp 0.0171 2046spp
KITCHEN 0.0148 1445spp 0.0146 1382spp
SALLE DE BAIN 0.0173 1427spp 0.0155 1355spp
STAIRCASE 1.2844 1891spp 0.2861 1729spp
VEACH DOOR 1.2976 1875spp 0.4129 1454spp

Table 2: Average runtime (in milliseconds) per operation for the
training and guiding-only phases on the equal-sample (750spp)
SALLE DE BAIN scene.

Training Phase Guiding-only Phase

NIS DF-L NIS DF-L

Method Forward 103 59.2 58.5 33.8
Method Backward 32.2 29.5 – –
Cache Forward – 20.5 – –
Cache Backward – 8.31 – –

3. Radiance Caching Comparison

We analyze the impact of radiance caching via an equal-time com-
parison in Table 1. As seen, radiance caching improvements vary
by scene, with higher gains in scenes with indirect lights such as
VEACH DOOR.

4. Memory and Runtime Analysis

We collect detailed memory usage and runtime costs of our method
during training and guiding-only phases for the BREAKFAST scene
with 750spp.

Runtime. As seen in Table 3, the majority of the time budget
(54%) in the training-phase is spent optimizing the guiding distri-
bution pΘ. Additionally, the training phase accounts for 70% of the
total time spent to render 750spp, even though we only train for the
first 250 samples. This training-time bottleneck highlights the im-
portance of our input conditioning that allows for parallel execution
when evaluating the PDF and computing gradients.

Memory. Table 4 shows that the additional buffers we statically
allocate to enable fast radiance caching constitute a significant por-
tion of the total memory usage (VRAM) in the training phase. As
we only use radiance caching for optimization, the approach deal-
locates these buffers, greatly reducing the memory requirement for
the guiding-only phase.

5. Additional Comparisons with NIS

We extensively compare our approach with NIS [MMR∗19]. First,
we describe the key differences of PDF evaluation and sampling in

Table 3: Runtime (in seconds) for training and guiding-only phases
on the 750spp render of the BREAKFAST scene.

Training Phase Guiding-only Phase

Raytrace 4.8 (11%) 5.0 (27%)
Method Inference 8.3 (19%) 13.5 (73%)
Method Train 23.8 (54%) –
Cache Inference 1.9 (4%) –
Cache Train 5.4 (12%) –

Total 44.2 18.5

Table 4: Memory usage (in GB) for training and guiding-only
phases on the 750spp render of the BREAKFAST scene.

Training Phase Guiding-only Phase

Raytrace 3.3 (52%) 3.3 (80%)
Method 1.1 (17%) 0.8 (20%)
Cache 1.9 (30%) –

Total 6.3 4.1

both methods, then we compare runtime metrics to show the impact
of these differences in practice. Lastly, we match the input encod-
ing of NIS and disable radiance caching to show that our method
achieves equal expressiveness in less time than NIS.

PDF Evaluation and Sampling. We detail the 2-dimensional PDF
evaluation and sampling processes of our approach and NIS in
Fig. 2. As seen, our approach models the PDF as a product of
conditional and marginal PDFs in a parallel-friendly formulation.
Specifically, MLP2 is conditioned on ϵ1 (provided during evalu-
ation), requiring only a single synchronization step to compute
the final product p̂Θ(ϵ1,ϵ2|x,ωo). During sampling, we first find
ϵ1 by inverse CDF sampling our marginal PDF (MLP1), then ϵ2
by performing an analogous operation on MLP2. In contrast, NIS
is formulated primarily as a sampling process that warps coordi-
nates α1,α2 using coupling functions (modeled by MLPs) to obtain
ϵ1,ϵ2. The PDF evaluation is a byproduct of this sampling process
obtained by executing the same process in reverse order and inverse
sampling operations. To compute the PDF, NIS requires sequen-
tial evaluation of both MLPs given the dependence on both α1 and
α2. In practice, our parallel evaluation yields faster training infer-
ence (forward), and gradient computation (backward). During the
guiding-only phase, our formulation also results in faster inference
given the need to evaluate the PDF of BSDF-sampled paths during
multiple importance sampling.

Runtime. We compare the runtime of NIS [MMR∗19] and our
method (DF-L) for the SALLE DE BAIN scene in Table 2. Specif-
ically, we highlight the runtime cost of optimizing the method and
cache during the training phase, and the cost of inference in the
guiding-only phase. In both stages, our method performs inference
and training faster than NIS on average, which contributes to the
lower overall runtime shown in Table 7.

Expressiveness We compare the linear interpolation variant of
our method without radiance caching to NIS with two piecewise
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Table 5: Equal-time comparison (120s) of increasing VMF counts
for NPM [DWL23] using the relMSE metric. As seen, NPM does
not benefit from additional VMFs above the author-recommended
value of 8.

NPM (8 VMFs) NPM (16 VMFs) NPM (32 VMFs)

BATHROOM 0.3761 1507spp 0.4602 1214spp 0.5638 975spp
BEDROOM 0.0182 1830spp 0.0205 1512spp 0.0265 1154spp
BREAKFAST 0.0286 3267spp 0.0404 2224spp 0.0584 1671spp
KITCHEN 0.0196 2091spp 0.0231 1467spp 0.0359 1157spp
SALLE DE BAIN 0.0233 2249spp 0.0303 1543spp 0.0392 1196spp
STAIRCASE 1.1155 1981spp 1.5215 1782spp 2.0558 1446spp
VEACH DOOR 1.8092 2828spp 3.8952 1824spp 6.5413 1422spp

quadratic coupling layers. For a fair comparison, both methods use
the same one-blob [MMR∗19] input encoding with 32 bins and
same network configuration. We render scenes with 750 samples
per pixel (spp) and report the relMSE metric in Fig. 4. As shown,
our method without radiance caching produces results comparable
to NIS, demonstrating equal expressiveness while being faster.

6. Additional Comparisons with NPM

VMF Count. In our comparisons, we model NPM [DWL23] us-
ing 8 VMFs, as specified by the authors. Here, we evaluate how
NPM performs using an increasing number of VMFs that trade ex-
pressiveness for increased runtime. Table 5 shows that NPM with 8
VMFs performs best in all scenes in an equal-time comparison.

7. Product Sampling Assessment

We evaluate the impact of product sampling on the equal-time per-
formance across all methods. To isolate this factor, we render a
modified VEACH DOOR scene that uses only diffuse BSDFs, thus
removing the influence of the product term with the BSDF. As
shown in Table 6, the ranking of the methods is consistent with
original VEACH DOOR discussed in the main paper. Notably, both
versions of our method maintain the top two positions.

Table 6: Equal-time comparison (120s) on a modified VEACH

DOOR scene with only diffuse BSDFs (DIFFUSE VD), using the
relMSE metric. As seen, the ranking of all methods remain similar
to the equal-time results on the unmodified VEACH DOOR scene,
indicating that learning the product with BSDF is not the defin-
ing reason for overall lower scores for neural (product-based) ap-
proaches.

PT PPG Variance NIS NPM DF-N DF-L

DIFFUSE VD 13.6338 3.2713 7.6464 1.9056 1.7107 0.4262 0.2306
VEACH DOOR 14.182 3.0940 9.3482 1.9415 1.8092 0.7132 0.4129
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Figure 1: We show convergence plot of all the approaches on the seven scenes from 75 to 750 spp. The 250 spp line is where all the
approaches (except the unidirectional path tracer) stop learning and use the learned distributions to sample the remaining paths.
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Figure 2: PDF evaluation and sampling diagrams for our method (DF) and NIS in the 2-dimensional case. Our approach models the PDF
as a product of conditional and marginal PDFs that can be evaluated in parallel since ϵ1 (highlighted in red) is given. Sampling is performed
by first finding ϵ1 in the marginal PDF, then providing it as input to the conditional PDF to find ϵ2. In contrast, NIS requires sequential
evaluation of both MLPs to compute α1 and α2 and evaluate the PDF. NIS samples target ϵ1,ϵ2 from α1,α2 by performing consecutive
inverse sampling operations in the reverse order of evaluation.
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Figure 3: Equal-sample comparison against several state-of-the-art methods. We use 750 spp for all the scenes, with a 30% training budget.
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Table 7: Equal-spp comparisons measured in relMSE. We compare our approach with nearest neighbor (DF-N) and linear (DF-L) interpo-
lation against unidirectional path tracing (PT), PPG [MGN17], Variance [RGH∗20], NIS [MMR∗19], and NPM [DWL23]. All the scenes
are rendered using each approach for 750 samples per pixel. We color code the first , second , and third lowest numbers.

PT PPG Variance NIS NPM DF-N DF-L

BATHROOM 4.8165 25.3s 1.1641 66.4s 1.2776 69.7s 0.2874 128s 0.7971 68.5s 0.3686 99.8s 0.2758 103s

BEDROOM 0.1676 20.7s 0.0852 63.7s 0.0761 64.7s 0.0254 106s 0.0473 47.7s 0.0306 83.9s 0.0250 85.3s

BREAKFAST 1.3996 14.6s 0.3520 50.2s 0.2717 44.4s 0.0480 70.4s 0.1740 35.3s 0.0540 61.1s 0.0451 62.7s

KITCHEN 0.4220 20.8s 0.1097 44.5s 0.0935 48.9s 0.0787 103s 0.0597 53.2s 0.0326 90.4s 0.0253 91.2s

SALLE DE BAIN 0.3829 19.3s 0.2074 70.5s 0.1380 61.1s 0.0316 102s 0.0743 45.6s 0.0356 81.5s 0.0292 82.8s

STAIRCASE 13.196 17.6s 2.8158 40.1s 5.4860 39.0s 2.1484 83.0s 3.8955 50.2s 0.7924 72.0s 0.6888 72.8s

VEACH DOOR 61.447 16.2s 6.3219 58.7s 16.113 65.8s 2.3971 85.5s 16.471 36.7s 1.4309 74.0s 0.8716 76.0s
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Figure 4: Equal-sample comparison of our method without radiance caching (DF-L NC) and NIS [MMR∗19]. All scenes are rendered with
750 spp under a training budget of 30%. As shown, our approach achieves results comparable to NIS, demonstrating equal expressiveness
while offering faster performance.
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